Home
Class 12
MATHS
int(0)^(1) ( dx)/( e^(x) + e^(-x)) is eq...

`int_(0)^(1) ( dx)/( e^(x) + e^(-x))` is equal to

A

`(pi)/( 4)`

B

`(pi)/( 2)`

C

`tan^(-1) ((e-1)/( e+1))`

D

`tan^(-1) ((1-e)/( 1+e))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int_{0}^{1} \frac{dx}{e^{x} + e^{-x}}, \] we can follow these steps: ### Step 1: Simplify the integrand The expression \( e^{x} + e^{-x} \) can be rewritten using the identity for hyperbolic cosine: \[ e^{x} + e^{-x} = 2 \cosh(x). \] Thus, we can rewrite the integral as: \[ \int_{0}^{1} \frac{dx}{e^{x} + e^{-x}} = \int_{0}^{1} \frac{dx}{2 \cosh(x)} = \frac{1}{2} \int_{0}^{1} \frac{dx}{\cosh(x)}. \] ### Step 2: Use substitution Next, we can use the substitution \( t = e^{x} \). Then, the differential \( dx \) can be expressed as: \[ dx = \frac{dt}{t}. \] When \( x = 0 \), \( t = e^{0} = 1 \), and when \( x = 1 \), \( t = e^{1} = e \). The limits of integration change accordingly. ### Step 3: Rewrite the integral Substituting into the integral, we have: \[ \frac{1}{2} \int_{1}^{e} \frac{1}{t + \frac{1}{t}} \cdot \frac{dt}{t} = \frac{1}{2} \int_{1}^{e} \frac{1}{\frac{t^2 + 1}{t}} \cdot \frac{dt}{t} = \frac{1}{2} \int_{1}^{e} \frac{t}{t^2 + 1} dt. \] ### Step 4: Integrate The integral \[ \int \frac{t}{t^2 + 1} dt \] can be solved using the substitution \( u = t^2 + 1 \), which gives \( du = 2t dt \) or \( dt = \frac{du}{2t} \). Thus, we have: \[ \int \frac{t}{t^2 + 1} dt = \frac{1}{2} \ln(t^2 + 1) + C. \] ### Step 5: Evaluate the definite integral Now, we evaluate the definite integral from \( 1 \) to \( e \): \[ \frac{1}{2} \left[ \frac{1}{2} \ln(t^2 + 1) \right]_{1}^{e} = \frac{1}{4} \left[ \ln(e^2 + 1) - \ln(1^2 + 1) \right] = \frac{1}{4} \left[ \ln(e^2 + 1) - \ln(2) \right]. \] ### Step 6: Simplify the result This simplifies to: \[ \frac{1}{4} \ln\left(\frac{e^2 + 1}{2}\right). \] ### Final Answer Thus, the value of the integral \[ \int_{0}^{1} \frac{dx}{e^{x} + e^{-x}} = \frac{1}{4} \ln\left(\frac{e^2 + 1}{2}\right). \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|55 Videos
  • INDETERMINATE FORMS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ICSE|Exercise EXAMPLE |7 Videos

Similar Questions

Explore conceptually related problems

int (dx)/( e^(x) + e^(-x) +2) is equal to

int(dx)/(e^x+e^(-x)) is equal to

The value of the integral int_(-1)^(1)(dx)/((1+x^(2))(1+e^(x)) is equal to

If int_(0)^(1) (e^(x))/( 1+x) dx = k , then int_(0)^(1) (e^(x))/( (1+x)^(2)) dx is equal to

int_(0)^(1) x e^(x) dx=1

int_(0)^(2) e^(x) dx

If int _(0)^(1) e ^(-x ^(2)) dx =0, then int _(0)^(1) x ^(2)e ^(-x ^(2)) dx is equal to

If int _(0)^(1) e ^(-x ^(2)) dx =a, then int _(0)^(1) x ^(2)e ^(-x ^(2)) dx is equal to

int_(0)^(1)x e^(x^(2)) dx

int_(0)^(1)e^(2x)e^(e^(x) dx =)