Home
Class 12
MATHS
int(0)^(1) ( x^(4) + 1)/( x^(2) + 1) dx ...

`int_(0)^(1) ( x^(4) + 1)/( x^(2) + 1) dx` is equal to

A

`(1)/( 6) ( 3- 4pi)`

B

`(1)/( 6) ( 3pi + 4)`

C

`( 1)/( 6) ( 3 + 4pi )`

D

`(1)/( 6) ( 3pi - 4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{1} \frac{x^4 + 1}{x^2 + 1} \, dx \), we can simplify the integrand and break it down into manageable parts. Here’s the step-by-step solution: ### Step 1: Rewrite the integrand We start with the integral: \[ I = \int_{0}^{1} \frac{x^4 + 1}{x^2 + 1} \, dx \] We can rewrite the numerator \( x^4 + 1 \) as \( (x^4 + 2x^2 + 1) - 2x^2 \): \[ I = \int_{0}^{1} \frac{(x^2 + 1)^2 - 2x^2}{x^2 + 1} \, dx \] This simplifies to: \[ I = \int_{0}^{1} (x^2 + 1) \, dx - 2 \int_{0}^{1} \frac{x^2}{x^2 + 1} \, dx \] ### Step 2: Evaluate the first integral Now we evaluate the first integral: \[ \int_{0}^{1} (x^2 + 1) \, dx = \int_{0}^{1} x^2 \, dx + \int_{0}^{1} 1 \, dx \] Calculating these separately: \[ \int_{0}^{1} x^2 \, dx = \left[ \frac{x^3}{3} \right]_{0}^{1} = \frac{1}{3} \] \[ \int_{0}^{1} 1 \, dx = [x]_{0}^{1} = 1 \] Thus, \[ \int_{0}^{1} (x^2 + 1) \, dx = \frac{1}{3} + 1 = \frac{4}{3} \] ### Step 3: Evaluate the second integral Next, we need to evaluate the second integral: \[ \int_{0}^{1} \frac{x^2}{x^2 + 1} \, dx \] We can simplify this integral: \[ \frac{x^2}{x^2 + 1} = 1 - \frac{1}{x^2 + 1} \] Thus, \[ \int_{0}^{1} \frac{x^2}{x^2 + 1} \, dx = \int_{0}^{1} 1 \, dx - \int_{0}^{1} \frac{1}{x^2 + 1} \, dx \] Calculating these: \[ \int_{0}^{1} 1 \, dx = 1 \] And, \[ \int_{0}^{1} \frac{1}{x^2 + 1} \, dx = \left[ \tan^{-1}(x) \right]_{0}^{1} = \tan^{-1}(1) - \tan^{-1}(0) = \frac{\pi}{4} - 0 = \frac{\pi}{4} \] Thus, \[ \int_{0}^{1} \frac{x^2}{x^2 + 1} \, dx = 1 - \frac{\pi}{4} \] ### Step 4: Combine the results Now we can substitute back into our expression for \( I \): \[ I = \frac{4}{3} - 2\left(1 - \frac{\pi}{4}\right) \] This simplifies to: \[ I = \frac{4}{3} - 2 + \frac{\pi}{2} = \frac{4}{3} - \frac{6}{3} + \frac{\pi}{2} = -\frac{2}{3} + \frac{\pi}{2} \] ### Final Result Thus, the final result for the integral is: \[ I = \frac{\pi}{2} - \frac{2}{3} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|55 Videos
  • INDETERMINATE FORMS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ICSE|Exercise EXAMPLE |7 Videos

Similar Questions

Explore conceptually related problems

int ( x^(2) + 1)/( x^(2) - 1)dx is equal to

int_(0)^(1) ( tan^(-1)x)/( 1+x^(2)) dx is equal to

If int_(0)^(1) (e^(x))/( 1+x) dx = k , then int_(0)^(1) (e^(x))/( (1+x)^(2)) dx is equal to

The value of int_(-1)^(1)((x^(2)+ sin x)/(1+x^(2)))dx is equal to

int(1)/(x^(2)+4x+13)dx is equal to

int(1)/(x(x^(4)-1))dx is equal to

If int _(0)^(1) e ^(-x ^(2)) dx =0, then int _(0)^(1) x ^(2)e ^(-x ^(2)) dx is equal to

If int _(0)^(1) e ^(-x ^(2)) dx =a, then int _(0)^(1) x ^(2)e ^(-x ^(2)) dx is equal to

int(x^(4)+1)/(x^(6)+1)dx is equal to

int(x^(9))/((4x^(2)+ 1)^(6))dx is equal to