Home
Class 12
MATHS
int(-pi//4)^(pi//4) ( dx)/( 1+cos 2x) ...

`int_(-pi//4)^(pi//4) ( dx)/( 1+cos 2x) ` is equal to

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{dx}{1 + \cos 2x} \), we can follow these steps: ### Step 1: Simplify the integrand We can use the trigonometric identity: \[ 1 + \cos 2x = 2 \cos^2 x \] Thus, we can rewrite the integral as: \[ I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{dx}{2 \cos^2 x} \] ### Step 2: Factor out the constant We can factor out the constant \( \frac{1}{2} \) from the integral: \[ I = \frac{1}{2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \sec^2 x \, dx \] ### Step 3: Integrate \( \sec^2 x \) The integral of \( \sec^2 x \) is: \[ \int \sec^2 x \, dx = \tan x \] Thus, we have: \[ I = \frac{1}{2} \left[ \tan x \right]_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \] ### Step 4: Evaluate the limits Now we will evaluate the limits: \[ I = \frac{1}{2} \left( \tan\left(\frac{\pi}{4}\right) - \tan\left(-\frac{\pi}{4}\right) \right) \] We know that: \[ \tan\left(\frac{\pi}{4}\right) = 1 \quad \text{and} \quad \tan\left(-\frac{\pi}{4}\right) = -1 \] Thus: \[ I = \frac{1}{2} \left( 1 - (-1) \right) = \frac{1}{2} \left( 1 + 1 \right) = \frac{1}{2} \cdot 2 = 1 \] ### Final Answer The value of the integral is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|55 Videos
  • INDETERMINATE FORMS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ICSE|Exercise EXAMPLE |7 Videos

Similar Questions

Explore conceptually related problems

int_(pi //4)^(3pi//4) (dx)/( 1+ cosx) is equal to

The Integral int_(pi/4)^((3pi)/4)(dx)/(1+cosx) is equal to:

int_(pi//6)^(pi//2) cos x dx

The Integral int_(pi/4)^((3pi)/4)(dx)/(1+cosx) is equal to: (2) (3) (4)

int_(-pi//2)^(pi//2) sqrt((1-cos 2x)/( 2)) dx is equal to

int_(-pi+4)^(pi//4) (tan^(2)x)/(1+a^(x))dx is equal to

int_(0)^( pi/4)(dx)/(1+cos x)

int_(0)^(pi//4)(dx)/((1+cos2x))

int_(-pi//4)^(pi//4) e^(-x)sin x" dx" is

int_(-pi//2)^(pi//2) cos x dx is equal to A) 0 B) 1 C) 2 D) 4