Home
Class 12
MATHS
int(0)^(pi//2) log | tan x | dx is equal...

`int_(0)^(pi//2) log | tan x | dx` is equal to

A

`pi log 2`

B

`-pi log 2`

C

0

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^{\frac{\pi}{2}} \log |\tan x| \, dx \), we will use a property of integrals along with some logarithmic identities. Here's the step-by-step solution: ### Step 1: Define the Integral Let \( I = \int_0^{\frac{\pi}{2}} \log |\tan x| \, dx \). ### Step 2: Use the Property of Integrals We can use the property of integrals that states: \[ \int_0^a f(x) \, dx = \int_0^a f(a - x) \, dx \] In our case, \( a = \frac{\pi}{2} \). Therefore, we can write: \[ I = \int_0^{\frac{\pi}{2}} \log |\tan(\frac{\pi}{2} - x)| \, dx \] ### Step 3: Simplify the Integral We know that: \[ \tan\left(\frac{\pi}{2} - x\right) = \cot x \] Thus, we can rewrite the integral as: \[ I = \int_0^{\frac{\pi}{2}} \log |\cot x| \, dx \] ### Step 4: Combine the Two Integrals Now we have two expressions for \( I \): 1. \( I = \int_0^{\frac{\pi}{2}} \log |\tan x| \, dx \) 2. \( I = \int_0^{\frac{\pi}{2}} \log |\cot x| \, dx \) Adding these two equations gives: \[ 2I = \int_0^{\frac{\pi}{2}} \left( \log |\tan x| + \log |\cot x| \right) \, dx \] ### Step 5: Use Logarithmic Properties Using the property of logarithms \( \log a + \log b = \log(ab) \), we can combine the logs: \[ \log |\tan x| + \log |\cot x| = \log |\tan x \cdot \cot x| = \log |1| = 0 \] ### Step 6: Evaluate the Integral Thus, we have: \[ 2I = \int_0^{\frac{\pi}{2}} 0 \, dx = 0 \] ### Step 7: Solve for \( I \) This implies: \[ 2I = 0 \implies I = 0 \] ### Final Answer Therefore, the value of the integral is: \[ \int_0^{\frac{\pi}{2}} \log |\tan x| \, dx = 0 \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|55 Videos
  • INDETERMINATE FORMS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ICSE|Exercise EXAMPLE |7 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) sin 2x log tan x dx is equal to

The value of int_(0)^(pi//2)ln|tanx+cotx| dx is equal to :

int_(0)^(pi//2) sin 2x log cot x dx is equal to

If A= int _(0)^(pi) (sin x)/(x ^(2))dx, then int _(0)^(pi//2) (cos 2 x )/(x) dx is equal to:

int_(0)^(pi//8) tan^(2) 2x dx is equal to

The value of the integral int_(0)^(pi//2)log |tan x cot x |dx is

int_(0)^(pi) x log sinx\ dx

int_(0)^(pi) x log sinx dx

If A=int_0^pi cosx/(x+2)^2 \ dx , then int_0^(pi//2) (sin 2x)/(x+1) \ dx is equal to

int_(-pi //2)^(pi//2) sin |x|dx is equal to