Home
Class 12
MATHS
int(-pi//2)^(pi//2) sqrt((1-cos 2x)/( 2)...

`int_(-pi//2)^(pi//2) sqrt((1-cos 2x)/( 2)) dx` is equal to

A

0

B

`(1)/(2)`

C

1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{\frac{1 - \cos 2x}{2}} \, dx \), we can follow these steps: ### Step 1: Simplify the integrand We start with the expression inside the integral: \[ \sqrt{\frac{1 - \cos 2x}{2}} \] Using the trigonometric identity \( \cos 2x = 1 - 2\sin^2 x \), we can rewrite \( 1 - \cos 2x \): \[ 1 - \cos 2x = 2\sin^2 x \] Thus, we can substitute this back into our integral: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{\frac{2\sin^2 x}{2}} \, dx \] ### Step 2: Simplify further The expression simplifies to: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{\sin^2 x} \, dx \] Since \( \sqrt{\sin^2 x} = |\sin x| \), we have: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} |\sin x| \, dx \] ### Step 3: Evaluate the integral The function \( |\sin x| \) is symmetric about the y-axis and is positive in the interval \( [-\frac{\pi}{2}, \frac{\pi}{2}] \). Therefore, we can write: \[ I = 2 \int_{0}^{\frac{\pi}{2}} \sin x \, dx \] ### Step 4: Compute the integral Now we compute the integral \( \int_{0}^{\frac{\pi}{2}} \sin x \, dx \): \[ \int \sin x \, dx = -\cos x \] Evaluating from \( 0 \) to \( \frac{\pi}{2} \): \[ \int_{0}^{\frac{\pi}{2}} \sin x \, dx = [-\cos x]_{0}^{\frac{\pi}{2}} = -\cos\left(\frac{\pi}{2}\right) - (-\cos(0)) = 0 + 1 = 1 \] ### Step 5: Final result Thus, we have: \[ I = 2 \cdot 1 = 2 \] ### Conclusion The value of the integral \( I \) is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|55 Videos
  • INDETERMINATE FORMS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ICSE|Exercise EXAMPLE |7 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(-pi/2)^(pi//2) sqrt((1+cos2x)/(2))dx is

int_(0)^(pi//2) sqrt(1- cos 2x) dx

int_(0)^(pi//2) sqrt(1- cos 2x) dx

int_(0)^(pi//2)sqrt( 1- sin 2 x ) dx is equal to

The value of int_(-pi)^(pi)(sqrt2cosx)/(1+e^(x))dx is equal to

The value of the integral int_(-pi//2)^(pi//2) sqrt(cosx-cos^(2)x)dx is

The value of int_(-pi//2)^(pi//2)(x^(2)+x cosx+tan^(5)x+1)dx is equal to

int_(pi//6)^(pi//2) cos x dx

The value of the definite integral int _(-(pi//2))^(pi//2)(cos ^(2) x )/(1+ 5 ^(x)) equal to:

int_(-pi//2)^(pi//2) cos x dx is equal to A) 0 B) 1 C) 2 D) 4