Home
Class 12
MATHS
int(a)^(b) ( sqrt(x))/( sqrt(x) + sqrt(a...

`int_(a)^(b) ( sqrt(x))/( sqrt(x) + sqrt(a+b-x))dx` is equal to

A

`(pi)/( 2)`

B

`pi`

C

`(1)/(2) ( b-a)`

D

`b-a`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{a}^{b} \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a+b-x}} \, dx \), we will use a property of definite integrals. Here are the steps: ### Step 1: Define the Integral Let \[ I = \int_{a}^{b} \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a+b-x}} \, dx \] ### Step 2: Use the Property of Definite Integrals We can use the property of definite integrals which states that: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a+b-x) \, dx \] In our case, we will substitute \( x \) with \( a+b-x \): \[ I = \int_{a}^{b} \frac{\sqrt{a+b-x}}{\sqrt{a+b-x} + \sqrt{x}} \, dx \] ### Step 3: Simplify the New Integral Now, let's denote this new integral as \( I' \): \[ I' = \int_{a}^{b} \frac{\sqrt{a+b-x}}{\sqrt{a+b-x} + \sqrt{x}} \, dx \] Notice that: \[ I' = \int_{a}^{b} \frac{\sqrt{a+b-x}}{\sqrt{a+b-x} + \sqrt{x}} \, dx \] ### Step 4: Add the Two Integrals Now, we will add \( I \) and \( I' \): \[ I + I' = \int_{a}^{b} \left( \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a+b-x}} + \frac{\sqrt{a+b-x}}{\sqrt{a+b-x} + \sqrt{x}} \right) \, dx \] The denominators are the same, so we can combine the numerators: \[ I + I' = \int_{a}^{b} \frac{\sqrt{x} + \sqrt{a+b-x}}{\sqrt{x} + \sqrt{a+b-x}} \, dx = \int_{a}^{b} 1 \, dx \] ### Step 5: Evaluate the Integral The integral simplifies to: \[ I + I' = \int_{a}^{b} 1 \, dx = b - a \] ### Step 6: Relate \( I \) and \( I' \) Since \( I' \) is equal to \( I \), we can write: \[ 2I = b - a \] Thus, \[ I = \frac{b - a}{2} \] ### Final Answer Therefore, the value of the integral is: \[ I = \frac{1}{2}(b - a) \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|55 Videos
  • INDETERMINATE FORMS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ICSE|Exercise EXAMPLE |7 Videos

Similar Questions

Explore conceptually related problems

inte^(sqrt(x))dx is equal to

int(cos sqrt(x))/( sqrt(x)) dx is equal to

int sqrt((x)/( 1-x))dx is equal to

2. int_(0)^(5)(sqrt(x))/(sqrt(x)+sqrt(5-x))dx

int sqrt(e^(x)-1)dx is equal to

int(1+x)/(1+3sqrt(x))dx is equal to

int_(0)^(9)sqrt(x)/(sqrt(x)+sqrt(9-x))dx=(9)/(2)

I=int_(2)^(3)(sqrt(x))/(sqrt(5-x)+sqrt(x))dx

int_(1)^(7)(log sqrt(x))/(log sqrt(8-x)+log sqrt(x))dx=

int(sqrt(x-1))/(x sqrt(x+1))dx " is equal to "