Home
Class 12
MATHS
int(0)^(pi//2)sqrt( 1- sin 2 x ) dx is e...

`int_(0)^(pi//2)sqrt( 1- sin 2 x ) dx` is equal to

A

`2 sqrt(2)`

B

`2 ( sqrt(2) +1)`

C

2

D

`2 ( sqrt(2) -1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{\frac{\pi}{2}} \sqrt{1 - \sin 2x} \, dx \), we can follow these steps: ### Step 1: Simplify the integrand We start with the expression inside the square root: \[ 1 - \sin 2x \] Using the double angle identity, we know that \( \sin 2x = 2 \sin x \cos x \). Thus, we can rewrite: \[ 1 - \sin 2x = 1 - 2 \sin x \cos x \] ### Step 2: Use the identity for squares We can express \( 1 - 2 \sin x \cos x \) as: \[ 1 - 2 \sin x \cos x = (\sin x - \cos x)^2 \] This follows from the identity \( a^2 + b^2 - 2ab = (a - b)^2 \). Here, \( a = \sin x \) and \( b = \cos x \). ### Step 3: Rewrite the integral Now we can rewrite the integral: \[ \int_{0}^{\frac{\pi}{2}} \sqrt{1 - \sin 2x} \, dx = \int_{0}^{\frac{\pi}{2}} \sqrt{(\sin x - \cos x)^2} \, dx \] Since \( \sin x - \cos x \) is non-negative in the interval \( [0, \frac{\pi}{2}] \), we can simplify: \[ \sqrt{(\sin x - \cos x)^2} = \sin x - \cos x \] Thus, the integral becomes: \[ \int_{0}^{\frac{\pi}{2}} (\sin x - \cos x) \, dx \] ### Step 4: Integrate Now we can integrate: \[ \int (\sin x - \cos x) \, dx = -\cos x - \sin x + C \] Evaluating from \( 0 \) to \( \frac{\pi}{2} \): \[ \left[-\cos x - \sin x\right]_{0}^{\frac{\pi}{2}} = \left[-\cos\left(\frac{\pi}{2}\right) - \sin\left(\frac{\pi}{2}\right)\right] - \left[-\cos(0) - \sin(0)\right] \] Calculating the values: \[ = \left[-0 - 1\right] - \left[-1 - 0\right] = -1 + 1 = 0 \] ### Final Result Thus, the value of the integral is: \[ \int_{0}^{\frac{\pi}{2}} \sqrt{1 - \sin 2x} \, dx = 0 \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|55 Videos
  • INDETERMINATE FORMS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ICSE|Exercise EXAMPLE |7 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//6) sqrt(1-sin 2x) dx

int_(0)^(pi//2) sqrt(1- cos 2x) dx

int_(0)^(pi//2) sqrt(1- cos 2x) dx

The integral int_(0)^(pi//2) f(sin 2 x)sin x dx is equal to

The value of the definite integral int_(0)^(pi//2)sin x sin 2x sin 3x dx is equal to

int_(0)^(pi//2) sin 2x log cot x dx is equal to

int_(0)^(pi//2) sin 2x log tan x dx is equal to

The int_(0)^(pi//2)sgn(sin^2x-sinx+1/2) dx is equal to , (where , sgn (x) denotes the sigum function of x)

If A= int _(0)^(pi) (sin x)/(x ^(2))dx, then int _(0)^(pi//2) (cos 2 x )/(x) dx is equal to:

int_(-pi//2)^(pi//2) sqrt((1-cos 2x)/( 2)) dx is equal to