Home
Class 12
MATHS
int(0)^(pi//2) sin 2x log cot x dx is eq...

`int_(0)^(pi//2) sin 2x log cot x dx` is equal to

A

`pi`

B

`2pi`

C

0

D

`(pi)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} \sin(2x) \log(\cot x) \, dx \), we can use a property of definite integrals. Here’s a step-by-step solution: ### Step 1: Define the Integral Let \[ I = \int_{0}^{\frac{\pi}{2}} \sin(2x) \log(\cot x) \, dx \] ### Step 2: Use the Property of Integrals We can use the property of integrals which states: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx \] In our case, \( a = 0 \) and \( b = \frac{\pi}{2} \). Thus, we have: \[ I = \int_{0}^{\frac{\pi}{2}} \sin(2(\frac{\pi}{2} - x)) \log(\cot(\frac{\pi}{2} - x)) \, dx \] ### Step 3: Simplify the Integral Now, we simplify the expressions: - \( \sin(2(\frac{\pi}{2} - x)) = \sin(\pi - 2x) = \sin(2x) \) - \( \cot(\frac{\pi}{2} - x) = \tan(x) \) Thus, we can rewrite the integral as: \[ I = \int_{0}^{\frac{\pi}{2}} \sin(2x) \log(\tan x) \, dx \] ### Step 4: Combine the Two Integrals Now we have two expressions for \( I \): 1. \( I = \int_{0}^{\frac{\pi}{2}} \sin(2x) \log(\cot x) \, dx \) 2. \( I = \int_{0}^{\frac{\pi}{2}} \sin(2x) \log(\tan x) \, dx \) Adding these two equations gives: \[ 2I = \int_{0}^{\frac{\pi}{2}} \sin(2x) \left( \log(\cot x) + \log(\tan x) \right) \, dx \] ### Step 5: Simplify the Logarithmic Expression Using the property of logarithms: \[ \log(a) + \log(b) = \log(ab) \] we can simplify: \[ \log(\cot x) + \log(\tan x) = \log(\cot x \cdot \tan x) = \log(1) = 0 \] ### Step 6: Evaluate the Integral Thus, we have: \[ 2I = \int_{0}^{\frac{\pi}{2}} \sin(2x) \cdot 0 \, dx = 0 \] This implies: \[ I = 0 \] ### Final Answer The value of the integral is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|55 Videos
  • INDETERMINATE FORMS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ICSE|Exercise EXAMPLE |7 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) sin 2x log tan x dx is equal to

int_(0)^(pi/4) sin 2x dx

The integral int_(0)^(pi//2) f(sin 2 x)sin x dx is equal to

The value of the definite integral int_(0)^(pi//2)sin x sin 2x sin 3x dx is equal to

int_(0)^(pi//2) x sin x cos x dx

int_(0)^(pi//2) sin^(2) x dx

int_(0)^(pi//2)sqrt( 1- sin 2 x ) dx is equal to

int_(0)^(pi//2) log | tan x | dx is equal to

If A= int _(0)^(pi) (sin x)/(x ^(2))dx, then int _(0)^(pi//2) (cos 2 x )/(x) dx is equal to:

The value of int_(0)^(pi//2)ln|tanx+cotx| dx is equal to :