Home
Class 12
MATHS
The value of int(-pi//2)^(pi//2) ( x^(5)...

The value of `int_(-pi//2)^(pi//2) ( x^(5)+ x sin^(2)x +2 tan^(-1)x ) dx` is

A

`pi`

B

2

C

1

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left( x^5 + x \sin^2 x + 2 \tan^{-1} x \right) dx, \] we will check if the integrand is an odd function. ### Step 1: Define the function Let \[ f(x) = x^5 + x \sin^2 x + 2 \tan^{-1} x. \] ### Step 2: Check if \(f(x)\) is an odd function To check if \(f(x)\) is an odd function, we need to evaluate \(f(-x)\): \[ f(-x) = (-x)^5 + (-x) \sin^2(-x) + 2 \tan^{-1}(-x). \] ### Step 3: Simplify \(f(-x)\) Now, simplify each term: 1. \((-x)^5 = -x^5\) (odd function) 2. \(\sin^2(-x) = \sin^2 x\) (even function), thus \((-x) \sin^2(-x) = -x \sin^2 x\) (odd function) 3. \(\tan^{-1}(-x) = -\tan^{-1}(x)\) (odd function), thus \(2 \tan^{-1}(-x) = -2 \tan^{-1}(x)\) (odd function) Putting it all together, we have: \[ f(-x) = -x^5 - x \sin^2 x - 2 \tan^{-1} x = -\left( x^5 + x \sin^2 x + 2 \tan^{-1} x \right) = -f(x). \] ### Step 4: Conclude that \(f(x)\) is odd Since \(f(-x) = -f(x)\), we conclude that \(f(x)\) is an odd function. ### Step 5: Evaluate the integral The integral of an odd function over a symmetric interval \([-a, a]\) is zero: \[ \int_{-a}^{a} f(x) \, dx = 0. \] Thus, \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left( x^5 + x \sin^2 x + 2 \tan^{-1} x \right) dx = 0. \] ### Final Answer The value of the integral is \[ \boxed{0}. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|55 Videos
  • INDETERMINATE FORMS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ICSE|Exercise EXAMPLE |7 Videos

Similar Questions

Explore conceptually related problems

The value of int_(-pi//2)^(pi//2)(sin^(2)x)/(1+2^(x))dx is

int_(-pi/2)^(pi/2) |sin x| dx

The value of int_(-pi)^(pi)(1-x^(2)) sin x cos^(2) x" dx" , is

The value of int_(-pi)^(pi) sin^(3) x cos^(2)x dx is

The value of int_(-pi//2)^(pi//2)(x^(2)+x cosx+tan^(5)x+1)dx is equal to

Evaluate: int_(-pi//2)^(pi//2)sin^7x dx

The value of int_(-pi//2)^(pi//2) sin{log(x+sqrt(x^(2)+1)}dx is

Evaluate: int_(-pi//2)^(pi//2)sin^2x\ dx

Evaluate : int_(-pi/2) ^(pi/2) sin^2x dx

The value of int_(-pi//4)^(pi//4)(e^(x)sec^(2)x)/(e^(2x)-1)dx , is