Home
Class 12
MATHS
If f(a+b-x) =f(x) , then int(a)^(b) x f(...

If `f(a+b-x) =f(x)` , then `int_(a)^(b) x f(x) dx ` is equal to

A

`(a+b)/( 2) int_(a)^(b) f(b-x) dx`

B

`(a+b)/( 2) int_(a)^(b) f(a-x) dx`

C

`(b-a)/( 2) int_(a)^(b) f(x) dx`

D

`(a+b)/( 2) int_(a)^(b) f(x) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \( I = \int_{a}^{b} x f(x) \, dx \) given the condition \( f(a + b - x) = f(x) \). ### Step-by-Step Solution: 1. **Define the Integral:** Let \( I = \int_{a}^{b} x f(x) \, dx \). 2. **Use the Property of Integration:** We know that \( \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx \). This property allows us to transform the variable in the integral. 3. **Change of Variable:** We can express the integral \( I \) in terms of \( a + b - x \): \[ I = \int_{a}^{b} (a + b - x) f(a + b - x) \, dx \] Since \( f(a + b - x) = f(x) \), we can substitute: \[ I = \int_{a}^{b} (a + b - x) f(x) \, dx \] 4. **Rewrite the Integral:** Now we can rewrite this integral: \[ I = \int_{a}^{b} (a + b) f(x) \, dx - \int_{a}^{b} x f(x) \, dx \] The second term is just \( I \): \[ I = (a + b) \int_{a}^{b} f(x) \, dx - I \] 5. **Combine Like Terms:** Adding \( I \) to both sides gives: \[ 2I = (a + b) \int_{a}^{b} f(x) \, dx \] 6. **Solve for \( I \):** Dividing both sides by 2, we find: \[ I = \frac{(a + b)}{2} \int_{a}^{b} f(x) \, dx \] ### Final Answer: Thus, the value of the integral \( \int_{a}^{b} x f(x) \, dx \) is: \[ \int_{a}^{b} x f(x) \, dx = \frac{(a + b)}{2} \int_{a}^{b} f(x) \, dx \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|55 Videos
  • INDETERMINATE FORMS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ICSE|Exercise EXAMPLE |7 Videos

Similar Questions

Explore conceptually related problems

int_(a+c)^(b+c) f(x) dx is equal to

If f(x)=f(a+b-x), then int_(a)^(b) xf(x)dx is equal to

If f(a+x)=f(x), then int_(0)^(na) f(x)dx is equal to (n in N)

Let f (x) be a conitnuous function defined on [0,a] such that f(a-x)=f(x)"for all" x in [ 0,a] . If int_(0)^(a//2) f(x) dx=alpha, then int _(0)^(a) f(x) dx is equal to

If f(x) =(x-1)/(x+1),f^(2)(x)=f(f(x)),……..,……..f^(k+1)(x)=f(f^(k)(x)) ,k=1,2,3,……and g(x)=f^(1998)(x) then int_(1//e)^(1) g(x)dx is equal to

If int f(x)dx=F(x), then intx^3f(x^2)dx is equal to :

Let f and g be continuous fuctions on [0, a] such that f(x)=f(a-x)" and "g(x)+g(a-x)=4 " then " int_(0)^(a)f(x)g(x)dx is equal to

If a lt b lt c in R and f (a + b +c - x) = f (x) for all, x then int_(a)^(b) (x(f(x) + f(x + c))dx)/(a + b) is:

If f((3x-4)/(3x+4))=x+2 , then int f(x)dx is equal to

If f and g are continuous functions on [ 0, pi] satisfying f(x) +f(pi-x) =1=g (x)+g(pi-x) then int_(0)^(pi) [f(x)+g(x)] dx is equal to