Home
Class 12
MATHS
int(0)^(pi//8) tan^(2) 2x dx is equal to...

`int_(0)^(pi//8) tan^(2) 2x dx` is equal to

A

`(4- pi )/( 8 )`

B

`( 4+ pi )/( 8)`

C

`( 4- pi )/( 4)`

D

`( 4- pi )/( 2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{\frac{\pi}{8}} \tan^2(2x) \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand We know that: \[ \tan^2(2x) = \sec^2(2x) - 1 \] Thus, we can rewrite the integral as: \[ \int_{0}^{\frac{\pi}{8}} \tan^2(2x) \, dx = \int_{0}^{\frac{\pi}{8}} (\sec^2(2x) - 1) \, dx \] ### Step 2: Separate the integral Now, we can separate the integral into two parts: \[ \int_{0}^{\frac{\pi}{8}} \tan^2(2x) \, dx = \int_{0}^{\frac{\pi}{8}} \sec^2(2x) \, dx - \int_{0}^{\frac{\pi}{8}} 1 \, dx \] ### Step 3: Solve the first integral The integral of \( \sec^2(2x) \) can be computed using the formula: \[ \int \sec^2(kx) \, dx = \frac{1}{k} \tan(kx) + C \] For our case, \( k = 2 \): \[ \int \sec^2(2x) \, dx = \frac{1}{2} \tan(2x) \] Thus, we evaluate: \[ \int_{0}^{\frac{\pi}{8}} \sec^2(2x) \, dx = \left[ \frac{1}{2} \tan(2x) \right]_{0}^{\frac{\pi}{8}} \] Calculating the limits: \[ = \frac{1}{2} \tan\left(2 \cdot \frac{\pi}{8}\right) - \frac{1}{2} \tan(0) = \frac{1}{2} \tan\left(\frac{\pi}{4}\right) - 0 = \frac{1}{2} \cdot 1 = \frac{1}{2} \] ### Step 4: Solve the second integral The integral of 1 from 0 to \( \frac{\pi}{8} \) is simply: \[ \int_{0}^{\frac{\pi}{8}} 1 \, dx = \left[ x \right]_{0}^{\frac{\pi}{8}} = \frac{\pi}{8} - 0 = \frac{\pi}{8} \] ### Step 5: Combine the results Now, substituting back into our separated integral: \[ \int_{0}^{\frac{\pi}{8}} \tan^2(2x) \, dx = \frac{1}{2} - \frac{\pi}{8} \] ### Step 6: Simplify the result To combine the terms, we can express \( \frac{1}{2} \) with a common denominator of 8: \[ \frac{1}{2} = \frac{4}{8} \] Thus: \[ \int_{0}^{\frac{\pi}{8}} \tan^2(2x) \, dx = \frac{4}{8} - \frac{\pi}{8} = \frac{4 - \pi}{8} \] ### Final Answer The value of the integral is: \[ \int_{0}^{\frac{\pi}{8}} \tan^2(2x) \, dx = \frac{4 - \pi}{8} \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|55 Videos
  • INDETERMINATE FORMS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ICSE|Exercise EXAMPLE |7 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) log | tan x | dx is equal to

int_(0)^(pi//2) x^(2) cos x dx

int_(0)^( pi/4)tan^(3)dx

The value of int_(0)^(pi//2)ln|tanx+cotx| dx is equal to :

The integral int_(0)^(pi//2) f(sin 2 x)sin x dx is equal to

int_(0)^(pi//2) sin^(4)xcos^(3)dx is equal to :

int_(0)^(pi)(x.sin^(2)x.cosx)dx is equal to

int_(0)^(pi//2) sin 2x log tan x dx is equal to

If A= int _(0)^(pi) (sin x)/(x ^(2))dx, then int _(0)^(pi//2) (cos 2 x )/(x) dx is equal to:

int_(-pi//2)^(pi//2) cos x dx is equal to A) 0 B) 1 C) 2 D) 4