Home
Class 12
MATHS
If a is a root of x^(2) - 3x-5=0 find th...

If a is a root of `x^(2) - 3x-5=0` find the value of `a^(4) - 2a^(3) - 7a^(2) -8a`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \( a^4 - 2a^3 - 7a^2 - 8a \) given that \( a \) is a root of the equation \( x^2 - 3x - 5 = 0 \). ### Step-by-step Solution: 1. **Identify the quadratic equation**: The given equation is \( x^2 - 3x - 5 = 0 \). Since \( a \) is a root, we have: \[ a^2 - 3a - 5 = 0 \] 2. **Express \( a^2 \)**: From the equation \( a^2 - 3a - 5 = 0 \), we can express \( a^2 \) in terms of \( a \): \[ a^2 = 3a + 5 \] 3. **Calculate \( a^3 \)**: To find \( a^3 \), we can multiply both sides of the equation for \( a^2 \) by \( a \): \[ a^3 = a \cdot a^2 = a(3a + 5) = 3a^2 + 5a \] Now substitute \( a^2 \) from step 2: \[ a^3 = 3(3a + 5) + 5a = 9a + 15 + 5a = 14a + 15 \] 4. **Calculate \( a^4 \)**: To find \( a^4 \), multiply both sides of the equation for \( a^3 \) by \( a \): \[ a^4 = a \cdot a^3 = a(14a + 15) = 14a^2 + 15a \] Substitute \( a^2 \) from step 2: \[ a^4 = 14(3a + 5) + 15a = 42a + 70 + 15a = 57a + 70 \] 5. **Substitute \( a^4 \), \( a^3 \), and \( a^2 \) into the expression**: Now substitute \( a^4 \), \( a^3 \), and \( a^2 \) into the expression \( a^4 - 2a^3 - 7a^2 - 8a \): \[ a^4 - 2a^3 - 7a^2 - 8a = (57a + 70) - 2(14a + 15) - 7(3a + 5) - 8a \] 6. **Simplify the expression**: Calculate each term: - \( -2(14a + 15) = -28a - 30 \) - \( -7(3a + 5) = -21a - 35 \) Now combine all terms: \[ 57a + 70 - 28a - 30 - 21a - 35 - 8a \] Combine like terms: \[ (57a - 28a - 21a - 8a) + (70 - 30 - 35) = 0a + 5 \] 7. **Final result**: Therefore, the value of \( a^4 - 2a^3 - 7a^2 - 8a \) is: \[ \boxed{5} \]
Promotional Banner

Topper's Solved these Questions

  • EQUATIONS

    RESONANCE|Exercise SELF PRACTICE PROBLEMS: |22 Videos
  • EQUATIONS

    RESONANCE|Exercise EXERCISE-1 (PART -1: PRE RMO) |44 Videos
  • DPP

    RESONANCE|Exercise QUESTION|665 Videos
  • FUNDAMENTAL OF MATHEMATICS

    RESONANCE|Exercise Exercise|138 Videos

Similar Questions

Explore conceptually related problems

Find the value of 5x^2-3x+7 at x=0

If a,b are roots of 3x^(2)-4x-2=0, then value of 3a^(2)+7b-(2)/(b) is equal to (a) (16)/(3) (b) (34)/(3)(c)(17)/(5)(d)(28)/(5)

If x=2 is a root of the polynomial f(x)=2x^(@)-3x+7a, find the value of a

If -2 is a root of the equation 3x^(2)+7x+p=0, find the value of k so that the roots of the equation x^(2)+k(4x+k-1)+p=0 are equal.

Find the value of X: (5)/(4) -(7)/(6)-((-2)/(3)) =X

Find the value of x: 5x-2(2x-7)=2(3x-1)+7/2

If x=(sqrt(3)+1)/(2), find the value of 4x^(3)+2x^(2)-8x+7

Find the value of x 2x+1=5 3x+4=7+2x

x=2/3 and x = − 3 are the roots of the equation ax^2 + 7 x + b = 0 , find the values of a a n d b .

If x=(2)/(3) and x=-3 are the roots of the equation ax^(2)+7x+b=0, find the values of a and b.