Home
Class 11
MATHS
If f (x) = (x-1)/( x+1), then...

If `f (x) = (x-1)/( x+1), ` then

A

A. ` f- (-(1)/(x)) = f(x)`

B

B. ` f(-(1)/(x)) =(1)/( f(x))`

C

C. ` f(- (1)/(x))= - f(x)`

D

D. `f ( -(1)/(x)) = -(1)/(f(x))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the function \( f(x) = \frac{x-1}{x+1} \) for \( x = -\frac{1}{x} \) and check which of the given options is correct. ### Step-by-step Solution: 1. **Substituting \( x = -\frac{1}{x} \) into \( f(x) \)**: \[ f\left(-\frac{1}{x}\right) = \frac{-\frac{1}{x} - 1}{-\frac{1}{x} + 1} \] 2. **Simplifying the numerator**: \[ -\frac{1}{x} - 1 = -\frac{1}{x} - \frac{x}{x} = -\frac{1 + x}{x} \] 3. **Simplifying the denominator**: \[ -\frac{1}{x} + 1 = -\frac{1}{x} + \frac{x}{x} = \frac{-1 + x}{x} \] 4. **Putting it all together**: \[ f\left(-\frac{1}{x}\right) = \frac{-\frac{1 + x}{x}}{\frac{-1 + x}{x}} = \frac{-1 - x}{-1 + x} \] 5. **Canceling the negative signs**: \[ f\left(-\frac{1}{x}\right) = \frac{1 + x}{1 - x} \] 6. **Recognizing the relationship**: We know that: \[ f(x) = \frac{x - 1}{x + 1} \] The reciprocal of \( f(x) \) is: \[ \frac{1}{f(x)} = \frac{x + 1}{x - 1} \] Thus, we can see that: \[ f\left(-\frac{1}{x}\right) = \frac{1 + x}{1 - x} = \frac{1}{f(x)} \] ### Conclusion: From the calculations, we find that: \[ f\left(-\frac{1}{x}\right) = \frac{1}{f(x)} \] This corresponds to option **B**: \( f\left(-\frac{1}{f(x)}\right) = \frac{1}{f(x)} \).
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 14

    ICSE|Exercise SECTION B|10 Videos
  • MODEL TEST PAPER 14

    ICSE|Exercise SECTION C |10 Videos
  • MODEL TEST PAPER -5

    ICSE|Exercise SECTION -C|10 Videos
  • MODEL TEST PAPER-1

    ICSE|Exercise Section-C|10 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(x-1)/(x+1),x!=-1, then show that f(f(x))=-1/x provided that x != 0,-1

If f(x)=(x-1)/(x+1),x!=-1, then show that f(f(x))=-1/x provided that x!=0,1.

If f(x)=(x-1)/(x+1),x!=-1, . then show that f(f(x))=-1/x , prove that x!=0 .

If f(x) = (x-1)/(x+1), x ne -1, 1 , then "fof"^(-1) is

Let (x) is a real function, defines as f(x) =(x-1)/(x+1), then prove that f(2x)=(3f(x)+1)/(f(x)+3).

If f is a real function defined by f(x)=(x-1)/(x+1) , then prove that f(2x)=(3f(x)+1)/(f(x)+3)

If f(x)=(x+1)/(x-1) , show that f{f(x)}=xdot

Let f(x)=(x-1)/(x+1), then f(1) i equal to

If A=R-{1} and function f:AtoA is defined by f(x)=(x+1)/(x-1) , then f^(-1)(x) is given by

If f(x)=(x+1)/(x-1) , x ne 1 , then f^(-1)(x) is