Home
Class 11
MATHS
If y = ( tan x)/( 1+ tan^2 x), Prove tha...

If `y = ( tan x)/( 1+ tan^2 x), `Prove that `(dy)/(dx) = cos 2x. `

Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 14

    ICSE|Exercise SECTION B|10 Videos
  • MODEL TEST PAPER 14

    ICSE|Exercise SECTION C |10 Videos
  • MODEL TEST PAPER -5

    ICSE|Exercise SECTION -C|10 Videos
  • MODEL TEST PAPER-1

    ICSE|Exercise Section-C|10 Videos

Similar Questions

Explore conceptually related problems

If Y = (1 + tan x)/(1 - tan x) , then (dy)/(dx) is

If y= "tan"^(-1) (2x)/(1-x^(2)) , prove that (dy)/(dx)= (2)/(1 + x^(2))

int (1-tan^2x)/(1+tan^2x) dx

If y = log ( sqrt( sin x - cos x)) , that prove that (dy)/(dx) = - (1)/(2) tan ((pi)/( 4) + x)

If y = tan^(-1) (sec x - tan x ) , "then" (dy)/(dx) is equal to

"If "y=(tan x)^((tan x)^(tan x))," then find "(dy)/(dx).

"If "y=(tan x)^((tan x)^(tan x))," then find "(dy)/(dx).

if y=sqrt((1-cos x )/(2)) , the n prove that (dy)/(dx)=1/2cos" x/2.

If y=sin^(-1)(cos x)+cos^(-1)(sin x) , prove that (dy)/(dx)=-2

Solve: tan^-1(dy/dx)=x+y