Home
Class 11
MATHS
Find from first principles differential...

Find from first principles differential coefficients of ` sqrt( x^(2)+1) `

Text Solution

AI Generated Solution

The correct Answer is:
To find the differential coefficient of \( f(x) = \sqrt{x^2 + 1} \) from first principles, we will follow these steps: ### Step 1: Define the function Let \( f(x) = \sqrt{x^2 + 1} \). ### Step 2: Apply the definition of the derivative The derivative from first principles is defined as: \[ f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} \] ### Step 3: Substitute \( f(x + \Delta x) \) We need to calculate \( f(x + \Delta x) \): \[ f(x + \Delta x) = \sqrt{(x + \Delta x)^2 + 1} \] Now, substituting this into the derivative formula gives: \[ f'(x) = \lim_{\Delta x \to 0} \frac{\sqrt{(x + \Delta x)^2 + 1} - \sqrt{x^2 + 1}}{\Delta x} \] ### Step 4: Simplify the expression To simplify the expression, we can multiply the numerator and denominator by the conjugate of the numerator: \[ f'(x) = \lim_{\Delta x \to 0} \frac{\left(\sqrt{(x + \Delta x)^2 + 1} - \sqrt{x^2 + 1}\right) \cdot \left(\sqrt{(x + \Delta x)^2 + 1} + \sqrt{x^2 + 1}\right)}{\Delta x \cdot \left(\sqrt{(x + \Delta x)^2 + 1} + \sqrt{x^2 + 1}\right)} \] This results in: \[ f'(x) = \lim_{\Delta x \to 0} \frac{(x + \Delta x)^2 + 1 - (x^2 + 1)}{\Delta x \cdot \left(\sqrt{(x + \Delta x)^2 + 1} + \sqrt{x^2 + 1}\right)} \] ### Step 5: Expand and simplify the numerator Expanding the numerator: \[ (x + \Delta x)^2 + 1 - (x^2 + 1) = (x^2 + 2x\Delta x + \Delta x^2 + 1) - (x^2 + 1) = 2x\Delta x + \Delta x^2 \] Thus, we have: \[ f'(x) = \lim_{\Delta x \to 0} \frac{2x\Delta x + \Delta x^2}{\Delta x \cdot \left(\sqrt{(x + \Delta x)^2 + 1} + \sqrt{x^2 + 1}\right)} \] ### Step 6: Factor out \( \Delta x \) Factoring out \( \Delta x \) from the numerator: \[ f'(x) = \lim_{\Delta x \to 0} \frac{\Delta x(2x + \Delta x)}{\Delta x \cdot \left(\sqrt{(x + \Delta x)^2 + 1} + \sqrt{x^2 + 1}\right)} \] Cancelling \( \Delta x \) from numerator and denominator gives: \[ f'(x) = \lim_{\Delta x \to 0} \frac{2x + \Delta x}{\sqrt{(x + \Delta x)^2 + 1} + \sqrt{x^2 + 1}} \] ### Step 7: Evaluate the limit Now, as \( \Delta x \to 0 \): \[ f'(x) = \frac{2x}{\sqrt{x^2 + 1} + \sqrt{x^2 + 1}} = \frac{2x}{2\sqrt{x^2 + 1}} = \frac{x}{\sqrt{x^2 + 1}} \] ### Final Answer Thus, the differential coefficient of \( \sqrt{x^2 + 1} \) is: \[ f'(x) = \frac{x}{\sqrt{x^2 + 1}} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 14

    ICSE|Exercise SECTION B|10 Videos
  • MODEL TEST PAPER 14

    ICSE|Exercise SECTION C |10 Videos
  • MODEL TEST PAPER -5

    ICSE|Exercise SECTION -C|10 Videos
  • MODEL TEST PAPER-1

    ICSE|Exercise Section-C|10 Videos

Similar Questions

Explore conceptually related problems

Find from first principles the differential coefficient of sin 2x .

Find from first principles the differential coefficient of 2x^(2) + 3x .

Differentiate from first principles: 1. 2x

Differentiate from first principles: 3. x^3

Differentiate e^(-x) from first principles

Differentiate from first principles: 9. sqrt( 2x +3)

Differentiate x^2cosx from first principles .

Find the differential coefficient of the following function with respect to 'x' from first principle. {:x^(2)+1:}

Find the differential coefficient of the following function with respect to 'x' from first principle. (1)/(x^(2))

Find the differential coefficient of the following function with respect to 'x' from first principle. (x+1)/(x-1)