Home
Class 11
MATHS
Evaluate : underset( x to prop) lim (2...

Evaluate : ` underset( x to prop) lim (2x^(2) + 7x+ 5)/( 4x^(2) +3x- 1 ) `

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit as \( x \) approaches infinity for the expression \( \frac{2x^2 + 7x + 5}{4x^2 + 3x - 1} \), we can follow these steps: ### Step 1: Identify the highest power of \( x \) In both the numerator and the denominator, the highest power of \( x \) is \( x^2 \). ### Step 2: Factor out \( x^2 \) We can factor \( x^2 \) out of both the numerator and the denominator: \[ \frac{2x^2 + 7x + 5}{4x^2 + 3x - 1} = \frac{x^2(2 + \frac{7}{x} + \frac{5}{x^2})}{x^2(4 + \frac{3}{x} - \frac{1}{x^2})} \] ### Step 3: Simplify the expression Now, we can cancel \( x^2 \) from the numerator and the denominator: \[ = \frac{2 + \frac{7}{x} + \frac{5}{x^2}}{4 + \frac{3}{x} - \frac{1}{x^2}} \] ### Step 4: Take the limit as \( x \) approaches infinity As \( x \) approaches infinity, the terms \( \frac{7}{x} \), \( \frac{5}{x^2} \), \( \frac{3}{x} \), and \( -\frac{1}{x^2} \) all approach 0. Therefore, we can substitute these limits into the expression: \[ = \frac{2 + 0 + 0}{4 + 0 - 0} = \frac{2}{4} \] ### Step 5: Simplify the result Now, we simplify \( \frac{2}{4} \): \[ = \frac{1}{2} \] ### Final Answer Thus, the limit is: \[ \lim_{x \to \infty} \frac{2x^2 + 7x + 5}{4x^2 + 3x - 1} = \frac{1}{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 14

    ICSE|Exercise SECTION B|10 Videos
  • MODEL TEST PAPER 14

    ICSE|Exercise SECTION C |10 Videos
  • MODEL TEST PAPER -5

    ICSE|Exercise SECTION -C|10 Videos
  • MODEL TEST PAPER-1

    ICSE|Exercise Section-C|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate underset(x to oo) lim ([x])/(2x)

Evaluate underset(xto3)"lim"((x^(2)-9))/((x-3))

Evaluate underset(x to -oo)lim(sqrt(x^(2)+3x+1))/(2x+4)

Evaluate lim_(x to 4) (x^(2) - 7x + 12)/(x^(2) - 16)

lim_(x to 1)(x^(2)-6x+5)/(x^(2)+3x-4)=

Evaluate the following limits : lim_(x to oo) (2x^(2)+7x+5)/(4x^(2)+3x-1)

Evaluate lim_(x to 0) [(3x^(2) + 4x + 5)/(x^(2) - 2x + 3)]

lim_(x to (1)/(2))lim (4x^(2)+8x-5)/(1-4x^(2))=

Evaluate lim_(x to 3) (x^(3) - 7x^(2) + 15x - 9)/(x^(4) - 5x^(3) + 27 x - 27)

Evaluate underset(xto0)lim(5sinx-7sin2x+3sin3x)/(x^(2)sinx).