Home
Class 12
MATHS
Find the coordinates of the foot of the ...

Find the coordinates of the foot of the perpendicular and the length of the perpendicular drawn from the point P(5,4,2) to the line `vec(r) = -hat(i) + 3hat(j) + hat(k) + lambda (2hat(i) + 3hat(j) - hat(k))`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the coordinates of the foot of the perpendicular and the length of the perpendicular drawn from the point \( P(5, 4, 2) \) to the line given by the vector equation \( \vec{r} = -\hat{i} + 3\hat{j} + \hat{k} + \lambda(2\hat{i} + 3\hat{j} - \hat{k}) \), we will follow these steps: ### Step 1: Identify the line's direction vector and point The line can be expressed in parametric form. The point on the line when \( \lambda = 0 \) is: \[ A = (-1, 3, 1) \] The direction vector of the line is: \[ \vec{d} = (2, 3, -1) \] ### Step 2: Write the coordinates of point \( Q \) on the line Using the parameter \( \lambda \), the coordinates of any point \( Q \) on the line can be expressed as: \[ Q(\lambda) = (-1 + 2\lambda, 3 + 3\lambda, 1 - \lambda) \] ### Step 3: Find the vector \( \vec{PQ} \) The vector \( \vec{PQ} \) from point \( P(5, 4, 2) \) to point \( Q(\lambda) \) is given by: \[ \vec{PQ} = Q(\lambda) - P = (-1 + 2\lambda - 5, 3 + 3\lambda - 4, 1 - \lambda - 2) \] This simplifies to: \[ \vec{PQ} = (2\lambda - 6, 3\lambda - 1, -\lambda - 1) \] ### Step 4: Set up the perpendicularity condition Since \( \vec{PQ} \) is perpendicular to the direction vector \( \vec{d} \), we can use the dot product: \[ \vec{PQ} \cdot \vec{d} = 0 \] Calculating the dot product: \[ (2\lambda - 6, 3\lambda - 1, -\lambda - 1) \cdot (2, 3, -1) = 0 \] This expands to: \[ (2\lambda - 6) \cdot 2 + (3\lambda - 1) \cdot 3 + (-\lambda - 1)(-1) = 0 \] Simplifying this gives: \[ 4\lambda - 12 + 9\lambda - 3 + \lambda + 1 = 0 \] Combining like terms: \[ 14\lambda - 14 = 0 \] Thus: \[ \lambda = 1 \] ### Step 5: Find the coordinates of point \( Q \) Substituting \( \lambda = 1 \) back into the equation for \( Q \): \[ Q(1) = (-1 + 2 \cdot 1, 3 + 3 \cdot 1, 1 - 1) = (1, 6, 0) \] ### Step 6: Calculate the length of the perpendicular The length of the perpendicular from point \( P(5, 4, 2) \) to point \( Q(1, 6, 0) \) is given by the distance formula: \[ d = \sqrt{(5 - 1)^2 + (4 - 6)^2 + (2 - 0)^2} \] Calculating this gives: \[ d = \sqrt{(4)^2 + (-2)^2 + (2)^2} = \sqrt{16 + 4 + 4} = \sqrt{24} = 2\sqrt{6} \] ### Final Answer The coordinates of the foot of the perpendicular \( Q \) are \( (1, 6, 0) \) and the length of the perpendicular is \( 2\sqrt{6} \). ---
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER -1

    ICSE|Exercise Secton - C|11 Videos
  • MODEL TEST PAPER -1

    ICSE|Exercise Secton - C|11 Videos
  • MODEL TEST PAPER - 8

    ICSE|Exercise Section - C |6 Videos
  • MODEL TEST PAPER -19

    ICSE|Exercise SECTION A|1 Videos

Similar Questions

Explore conceptually related problems

Find the length of the perpendicular drawn from the point (5,4,-1) . to the line vec r= hat i+lambda(2 hat i+9 hat j+5 hat k)dot

Find the length of the perpendicular drawn from the point (5,4,-1) to the line vec r= hat i+lambda(2 hat i+9 hat j+5 hat k), wher lambda is a parameter.

Find the angle between the vector vec(a) =2 hat(i) + 3hat(j) - 4 hat(k) and vec(b) = 4hat(i) +5 hat(j) - 2hat(k) .

Unit vectors perpendicular to the plane of vectors vec(a) = 2 hat(*i) - 6 hat(j) - 3 hat(k) and vec(b) = 4 hat(i) + 3 hat(j) - hat(k) are

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Find the position vector of the foot of perpendicular and the perpendicular distance from the point P with position vector 2 hat i+3 hat j+4 hat k to the plane vec rdot(2 hat i+ hat j+3 hat k)-26=0. Also find image of P in the plane.

A vector of magnitude 5 and perpendicular to hat(i) - 2 hat(j) + hat(k) and 2 hat(i) + hat(j) - 3 hat(k) is

Find the image of the point having position vector hat(i) + 3hat(j) + 4hat(k) in the plane vec(r ).(2hat(i) - hat(j) + hat(k))+ 3=0

Find the unit vector perpendicular to both 2hat(i) + 3hat(j)+ hat(k) and hat(i)-hat(j)+ 4hat(k)

Find the foot of the perpendicular drawn from the point 2 hat i- hat j+5 hat k to the line vec r=(11 hat i-2 hat j-8 hat k)+lambda(10 hat i-4 hat j-11 hat k)dot Also find the length of the perpendicular.