Home
Class 12
MATHS
Given, n = 5, Sigma x(i) = 25, Sigma y(i...

Given, `n = 5, Sigma x_(i) = 25, Sigma y_(i) = 20, Sigma x_(i) y_(i) = 90` and `Sigma x_(i)^(2) = 135`, find the regression coefficient of y on x.

Text Solution

AI Generated Solution

The correct Answer is:
To find the regression coefficient of \( y \) on \( x \), we will use the formula: \[ b_{y|x} = \frac{\Sigma x_i y_i - \frac{\Sigma x_i \cdot \Sigma y_i}{n}}{\Sigma x_i^2 - \frac{(\Sigma x_i)^2}{n}} \] ### Step 1: Identify the given values - \( n = 5 \) - \( \Sigma x_i = 25 \) - \( \Sigma y_i = 20 \) - \( \Sigma x_i y_i = 90 \) - \( \Sigma x_i^2 = 135 \) ### Step 2: Calculate the numerator We need to calculate \( \Sigma x_i y_i - \frac{\Sigma x_i \cdot \Sigma y_i}{n} \). 1. Calculate \( \frac{\Sigma x_i \cdot \Sigma y_i}{n} \): \[ \frac{\Sigma x_i \cdot \Sigma y_i}{n} = \frac{25 \cdot 20}{5} = \frac{500}{5} = 100 \] 2. Now, calculate the numerator: \[ \Sigma x_i y_i - \frac{\Sigma x_i \cdot \Sigma y_i}{n} = 90 - 100 = -10 \] ### Step 3: Calculate the denominator Now we will calculate \( \Sigma x_i^2 - \frac{(\Sigma x_i)^2}{n} \). 1. Calculate \( \frac{(\Sigma x_i)^2}{n} \): \[ \frac{(\Sigma x_i)^2}{n} = \frac{25^2}{5} = \frac{625}{5} = 125 \] 2. Now, calculate the denominator: \[ \Sigma x_i^2 - \frac{(\Sigma x_i)^2}{n} = 135 - 125 = 10 \] ### Step 4: Calculate the regression coefficient Now we can substitute the values into the regression coefficient formula: \[ b_{y|x} = \frac{-10}{10} = -1 \] ### Conclusion The regression coefficient of \( y \) on \( x \) is: \[ b_{y|x} = -1 \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER -1

    ICSE|Exercise Section - B|10 Videos
  • MODEL TEST PAPER - 8

    ICSE|Exercise Section - C |6 Videos
  • MODEL TEST PAPER -19

    ICSE|Exercise SECTION A|1 Videos

Similar Questions

Explore conceptually related problems

If Sigma(x_(i)-2)=10,Sigma(y_(i)-5)=20,Sigmax_(i)y_(i)=148andn=5 , find cov (x,y)

If Cov(x,y) = -2, Sigma y = 30 , Sigma x = 25 and Sigma xy = 140 , find the number of observations .

Find correlation coefficient when, Sigma x_(i) = 40, Sigma y_(i)= 55, Sigma x_(i)^(2) = 192, Sigmay_(i)^(2)=385, Sigma(x_(i)+y_(i))^(2)=947 and n = 10.

If barx=18,bary=100, sigma_(x)=14,sigma_(y)=20 and correlation r_(xy)=0.8 , find the regression equation of y on x.

The following results were obtained with respect to two variables x and y. Sigmax=15,Sigmay=25,Sigmaxy=83,Sigmax^(2)=55,Sigmay^(2)=135and n= 5 (i) Find the regression coefficient b_(xy) . (ii) Find the regrassion equation of x on y.

A data consists of n observations x_(1), x_(2), ..., x_(n). If Sigma_(i=1)^(n) (x_(i) + 1)^(2) = 9n and Sigma_(i=1)^(n) (x_(i) - 1)^(2) = 5n , then the standard deviation of this data is

Given Sigma_(i=1)^(20) a_i=100, Sigma_(i-1)^(20) a_i^2=600, Sigma_(i-1)^(20) b_i=140, Sigma_(i-1)^(20)b_i^2=1000 , where a_i,b_i denotes length and weight of an observations. Then which is more varying ?

If sigma_(x) = 3, sigma_(y) = 4 , and b_(xy) = (1)/(3) , then the value of r is

If Sigma_(i=1)^(10) x_i=60 and Sigma_(i=1)^(10)x_i^2=360 then Sigma_(i=1)^(10)x_i^3 is