Home
Class 12
MATHS
(d)/(dx)[tan^(-1)((a-x)/(1+ax))] is equa...

`(d)/(dx)[tan^(-1)((a-x)/(1+ax))]` is equal to

A

`-(1)/(1+x^(2))`

B

`(1)/(1+a^(2)) - (1)/(1+x^(2))`

C

`(1)/(1+((a-x)/(1+ax))^(2))`

D

`(1)/(sqrt(1-((a-x)/(1+ax))^(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \(\frac{d}{dx}\left[\tan^{-1}\left(\frac{a-x}{1+ax}\right)\right]\), we will use the chain rule and the properties of the inverse tangent function. ### Step-by-Step Solution: 1. **Identify the function**: We need to differentiate the function \(y = \tan^{-1}\left(\frac{a-x}{1+ax}\right)\). 2. **Apply the chain rule**: The derivative of \(\tan^{-1}(u)\) with respect to \(x\) is given by \(\frac{1}{1+u^2} \cdot \frac{du}{dx}\), where \(u = \frac{a-x}{1+ax}\). 3. **Find \(u\)**: \[ u = \frac{a-x}{1+ax} \] 4. **Differentiate \(u\)**: We need to find \(\frac{du}{dx}\). - Using the quotient rule: \[ \frac{du}{dx} = \frac{(1+ax)(-1) - (a-x)(a)}{(1+ax)^2} \] - Simplifying the numerator: \[ = \frac{-(1+ax) + a(a-x)}{(1+ax)^2} \] \[ = \frac{-1 - ax + a^2 - ax}{(1+ax)^2} \] \[ = \frac{a^2 - 1 - 2ax}{(1+ax)^2} \] 5. **Substitute \(u\) and \(\frac{du}{dx}\) into the derivative**: \[ \frac{dy}{dx} = \frac{1}{1 + \left(\frac{a-x}{1+ax}\right)^2} \cdot \frac{a^2 - 1 - 2ax}{(1+ax)^2} \] 6. **Simplify \(1 + u^2\)**: \[ 1 + \left(\frac{a-x}{1+ax}\right)^2 = 1 + \frac{(a-x)^2}{(1+ax)^2} \] \[ = \frac{(1+ax)^2 + (a-x)^2}{(1+ax)^2} \] 7. **Combine the expressions**: \[ \frac{dy}{dx} = \frac{(a^2 - 1 - 2ax)}{(1 + ax)^2} \cdot \frac{(1 + ax)^2}{(1 + ax)^2 + (a-x)^2} \] 8. **Final expression**: \[ \frac{dy}{dx} = \frac{a^2 - 1 - 2ax}{(1 + ax)^2 + (a-x)^2} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 2

    ICSE|Exercise Section - B|10 Videos
  • MODEL TEST PAPER - 2

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 18

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 3

    ICSE|Exercise SECTION - C|10 Videos

Similar Questions

Explore conceptually related problems

int _( 0) ^(sqrt3) ((1)/(2) (d)/(dx)(tan ^(-1) ""(2x)/(1- x^(2))))dx equals to:

d/(dx)[tan^(-1)((sqrt(x)(3-x))/(1-3x))]=

(d)/(dx)(e^((1)/(2)log(1+tan^(2)x))) is equal to

Differentiate tan^(-1)((a+x)/(1-a x)) with respect to x

Differentiate tan^(-1)((1+a x)/(1-a x)) with respect to sqrt(1+a^2x^2)dot

Differentiate the following functions with respect to x : tan^(-1)sqrt((a-x)/(a+x)) , -a< x < a

Differentiate tan^(-1)((a+b x)/(b-a x)) with respect to x .

Differentiate tan^(-1)((1-x)/(1+x)) with respect to sqrt(1-x^2) , if -1 < x < 1 .

Differentiate tan^(-1)((2x)/(1-x^2)) with respect to x , if x in (-1,\ 1)

Differentiate tan^(-1)((x)/(sqrt(1-x^(2)))) with respect to cos^(-1)(2x^(2)-1) .