Home
Class 12
MATHS
If [[x,y^(3)],[2,0]]= [[1,8],[2,0]], the...

If `[[x,y^(3)],[2,0]]= [[1,8],[2,0]]`, then find the corresponding skew - symmetric matric of `[[x,y],[2,0]]`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the corresponding skew-symmetric matrix of the matrix \(\begin{bmatrix} x & y \\ 2 & 0 \end{bmatrix}\) given that \(\begin{bmatrix} x & y^3 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 8 \\ 2 & 0 \end{bmatrix}\). ### Step-by-Step Solution: 1. **Set Up the Equation**: We have the equation: \[ \begin{bmatrix} x & y^3 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 8 \\ 2 & 0 \end{bmatrix} \] From this, we can equate the corresponding elements of the matrices. 2. **Equate the Elements**: From the first row and first column: \[ x = 1 \] From the first row and second column: \[ y^3 = 8 \] From the second row and first column: \[ 2 = 2 \quad \text{(This is always true)} \] From the second row and second column: \[ 0 = 0 \quad \text{(This is always true)} \] 3. **Solve for \(y\)**: To find \(y\), we solve the equation \(y^3 = 8\): \[ y = \sqrt[3]{8} = 2 \] 4. **Construct the Matrix**: Now that we have \(x\) and \(y\): \[ x = 1, \quad y = 2 \] The matrix \(\begin{bmatrix} x & y \\ 2 & 0 \end{bmatrix}\) becomes: \[ A = \begin{bmatrix} 1 & 2 \\ 2 & 0 \end{bmatrix} \] 5. **Find the Skew-Symmetric Matrix**: The skew-symmetric matrix \(B\) corresponding to matrix \(A\) is given by: \[ B = \frac{1}{2}(A - A^T) \] First, we calculate \(A^T\): \[ A^T = \begin{bmatrix} 1 & 2 \\ 2 & 0 \end{bmatrix}^T = \begin{bmatrix} 1 & 2 \\ 2 & 0 \end{bmatrix} \] Now, we compute \(A - A^T\): \[ A - A^T = \begin{bmatrix} 1 & 2 \\ 2 & 0 \end{bmatrix} - \begin{bmatrix} 1 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \] 6. **Final Skew-Symmetric Matrix**: Therefore, the skew-symmetric matrix \(B\) is: \[ B = \frac{1}{2} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \] ### Conclusion: The corresponding skew-symmetric matrix of \(\begin{bmatrix} x & y \\ 2 & 0 \end{bmatrix}\) is: \[ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 2

    ICSE|Exercise Section - B|10 Videos
  • MODEL TEST PAPER - 2

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 18

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 3

    ICSE|Exercise SECTION - C|10 Videos

Similar Questions

Explore conceptually related problems

Show that the following matrices are skew symmetric: [[0,1,-1],[-1,0,1],[1,-1,0]]

If the matrix A = [[0,a,-3],[2,0,-1],[b,1,0]] is skew symmetric, find the value of a and b .

If the matrix A=[[0,a,-3],[2,0,-1],[b,1,0]] is skew-symmetric, find the values of a ,\ b .

If A=[(0,2,-3),(-2,0,-1),(3,1,0)] then A is (A) diagonal matrix (B) symmetric matix (C) skew symmetric matrix (D) none of these

If matrix A=[{:(1,-4),(3,0):}] is express as a sum of symmetric and skew symmetric matrices as [{:(1,x),(-(1)/(2),0):}]+[{:(0,-(7)/(2)),(y,0):}] then x+y=?

If matrix [{:(0,a,3),(2,b,-1),(c,1,0):}] is skew-symmetric matrix, then find the values of a,b and c,

If A=[(2, 0,-3),( 4, 3, 1),(-5, 7, 2)] is expressed as the sum of a symmetric and skew-symmetric matrix, then the symmetric matrix is (a) [(2, 2,-4 ),(2, 3, 4),(-4, 4, 2)] (b) [(2, 4,-5),( 0, 3, 7),(-3, 1, 2)] (c) [(4, 4,-8),( 4, 6, 8),(-8, 8, 4)] (d) [(1, 0 ,0 ),(0 ,1 ,0),( 0, 0, 1)]

If 2((1,3),(0,x))+((y,0),(1,2))=((5,6),(1,8)) , then find the value of x+y.

If x=9 is the chord of contact of the hyperbola x^2-y^2=9 then the equation of the corresponding pair of tangents is (A) 9x^2-8y^2+18x-9=0 (B) 9x^2-8y^2-18x+9=0 (C) 9x^2-8y^2-18x-9=0 (D) 9x^2-8y^2+18x+9=0

If x=9 is the chord of contact of the hyperbola x^2-y^2=9 then the equation of the corresponding pair of tangents is (A) 9x^2-8y^2+18x-9=0 (B) 9x^2-8y^2-18x+9=0 (C) 9x^2-8y^2-18x-9=0 (D) 9x^2-8y^2+18x+9=0