Home
Class 12
MATHS
Simplify : cot^(-1) ((1)/(sqrt(x^(2) -1)...

Simplify : `cot^(-1) ((1)/(sqrt(x^(2) -1)))` for `x lt -1`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( \cot^{-1} \left( \frac{1}{\sqrt{x^2 - 1}} \right) \) for \( x < -1 \), we can follow these steps: ### Step 1: Substitute \( x \) with \( \sec(\theta) \) Let \( x = \sec(\theta) \). This substitution is valid because for \( x < -1 \), \( \sec(\theta) \) can take negative values when \( \theta \) is in the second quadrant. ### Step 2: Express \( x^2 \) From the substitution, we have: \[ x^2 = \sec^2(\theta) \] ### Step 3: Simplify \( \sqrt{x^2 - 1} \) Using the identity \( \sec^2(\theta) - 1 = \tan^2(\theta) \), we can rewrite: \[ \sqrt{x^2 - 1} = \sqrt{\sec^2(\theta) - 1} = \sqrt{\tan^2(\theta)} = |\tan(\theta)| \] Since \( x < -1 \), \( \theta \) is in the second quadrant where \( \tan(\theta) \) is negative. Therefore, we have: \[ \sqrt{x^2 - 1} = -\tan(\theta) \] ### Step 4: Substitute back into the expression Now, substituting this back into our expression gives: \[ \cot^{-1} \left( \frac{1}{-\tan(\theta)} \right) = \cot^{-1} \left( -\cot(\theta) \right) \] ### Step 5: Simplify \( \cot^{-1}(-\cot(\theta)) \) Recall that \( \cot^{-1}(-\cot(\theta)) = \pi - \cot^{-1}(\cot(\theta)) \), which simplifies to: \[ \pi - \theta \] ### Step 6: Substitute \( \theta \) back in terms of \( x \) Since we let \( x = \sec(\theta) \), we have: \[ \theta = \sec^{-1}(x) \] Thus, we can rewrite our expression as: \[ \pi - \sec^{-1}(x) \] ### Final Result Therefore, the simplified form of the expression is: \[ \cot^{-1} \left( \frac{1}{\sqrt{x^2 - 1}} \right) = \pi - \sec^{-1}(x) \] ---
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 2

    ICSE|Exercise Section - B|10 Videos
  • MODEL TEST PAPER - 2

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 18

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 3

    ICSE|Exercise SECTION - C|10 Videos

Similar Questions

Explore conceptually related problems

cot^(-1)sqrt(x)

Find the domain of: y=cot^(-1)(sqrt(x^(2)-1))

tan^(-1)""(x)/(sqrt(a^(2)-x^(2))),|x|lt a

y = cos ^(-1)((1 - x^(2))/(1+ x^(2))) 0 lt x lt 1

Differentiate the following function with respect to x : cos^(-1){(x+sqrt(1-x^2))/(sqrt(2))}; -1 lt x lt 1

Prove each of the following tan^(-1) x=-pi +cot^(-1) 1/x=sin^(-1) (x)/(sqrt(1+x^(2)) =-cos^(-1) (1)/(sqrt(1+x^(2))" when "x lt 0

sqrt(cot^(-1)sqrt(x))

Simplify : - (1)/(3) le (x)/(2) - 1(1)/(3) lt (1)/(6) : x in R . Graph the values of x on the real number line.

Write cot^(-1)(1/(sqrt(x^2-1))),|x|>1 in the simplest form.

Prove that 3 tan^(-1) x= {(tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " -(1)/(sqrt3) lt x lt (1)/(sqrt3)),(pi + tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " x gt (1)/(sqrt3)),(-pi + tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " x lt - (1)/(sqrt3)):}