Home
Class 12
MATHS
By using L' Hospital's rule, evaluate : ...

By using L' Hospital's rule, evaluate : `Lim_(x rarr (pi)/(2))` (cos x log tan x).

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{x \to \frac{\pi}{2}} \cos x \log \tan x \) using L'Hospital's Rule, we first need to rewrite the expression in a suitable form. ### Step 1: Rewrite the limit We start with: \[ \lim_{x \to \frac{\pi}{2}} \cos x \log \tan x \] As \( x \) approaches \( \frac{\pi}{2} \), \( \cos x \) approaches \( 0 \) and \( \log \tan x \) approaches \( -\infty \) (since \( \tan x \to \infty \)). Therefore, we have a \( 0 \cdot (-\infty) \) form, which we can rewrite as: \[ \lim_{x \to \frac{\pi}{2}} \frac{\log \tan x}{\frac{1}{\cos x}} \] This gives us the form \( \frac{-\infty}{\infty} \), which is suitable for applying L'Hospital's Rule. ### Step 2: Apply L'Hospital's Rule Now, we differentiate the numerator and the denominator: - The derivative of the numerator \( \log \tan x \) is: \[ \frac{d}{dx}(\log \tan x) = \frac{1}{\tan x} \cdot \sec^2 x = \frac{\sec^2 x}{\tan x} \] - The derivative of the denominator \( \frac{1}{\cos x} \) is: \[ \frac{d}{dx}(\frac{1}{\cos x}) = \frac{\sin x}{\cos^2 x} = \tan x \sec x \] Thus, we can rewrite our limit as: \[ \lim_{x \to \frac{\pi}{2}} \frac{\frac{\sec^2 x}{\tan x}}{\tan x \sec x} \] ### Step 3: Simplify the expression This simplifies to: \[ \lim_{x \to \frac{\pi}{2}} \frac{\sec^2 x}{\tan^2 x \sec x} = \lim_{x \to \frac{\pi}{2}} \frac{\sec x}{\tan^2 x} \] ### Step 4: Substitute the limit Now, we substitute \( x = \frac{\pi}{2} \): - \( \sec \frac{\pi}{2} = \frac{1}{\cos \frac{\pi}{2}} = \infty \) - \( \tan \frac{\pi}{2} = \infty \) Thus, we have: \[ \lim_{x \to \frac{\pi}{2}} \frac{\infty}{\infty^2} = \lim_{x \to \frac{\pi}{2}} \frac{1}{\tan^2 x} \] ### Step 5: Evaluate the limit As \( x \to \frac{\pi}{2} \), \( \tan^2 x \to \infty \), hence: \[ \lim_{x \to \frac{\pi}{2}} \frac{1}{\tan^2 x} = 0 \] ### Conclusion Thus, the final result is: \[ \lim_{x \to \frac{\pi}{2}} \cos x \log \tan x = 0 \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 2

    ICSE|Exercise Section - B|10 Videos
  • MODEL TEST PAPER - 2

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 18

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 3

    ICSE|Exercise SECTION - C|10 Videos

Similar Questions

Explore conceptually related problems

Using L' Hospital's rule evaluate: lim_(x to 0) (e^x−1)/x

Using L' Hospital's Rule evaluate : Lim_(x to o)(1+sinx)^(cotx)

Using L' Hospital' s rule prove that lim_(x to (pi)/(2)) (sec x - tan x ) = 0

Using L' Hospital's rule, evaluate: lim_(x to 0) ((1)/(x^(2))-(cotx)/(x))

Using L'Hospital's rule, evaluate : lim_(x to 0) (x-sinx)/(x^(2)sinx) .

Using L'Hospital's rule, evaluate : lim_(xrarr0)((e^(x)-e^(-x)-2x))/(x-"sin"x)

Usinfg L' Hospital's rule, evaluate : lim_(xrarr0)(xe^(x)-"log"(1+x))/x^(2)

Using L Hospital rule evaluate lim_(xrarr0) (e^(x)-1-x)/(x(e^(x)-1))

lim_(x rarr0)(1/x)^(1-cos x)

Evaluate lim_(x to (pi)/(4)) (cos x - "sin" x)/(cos 2x)