Home
Class 12
MATHS
Evaluate : int(0)^(pi//2) (3^("cos x"))/...

Evaluate : `int_(0)^(pi//2) (3^("cos x"))/(3^("sin x") + 3^("cos x")) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_0^{\frac{\pi}{2}} \frac{3^{\cos x}}{3^{\sin x} + 3^{\cos x}} \, dx, \] we will use a property of definite integrals. ### Step 1: Use the substitution property of integrals We can use the property that states: \[ \int_a^b f(x) \, dx = \int_a^b f(b - x) \, dx. \] In our case, we will replace \( x \) with \( \frac{\pi}{2} - x \): \[ I = \int_0^{\frac{\pi}{2}} \frac{3^{\cos\left(\frac{\pi}{2} - x\right)}}{3^{\sin\left(\frac{\pi}{2} - x\right)} + 3^{\cos\left(\frac{\pi}{2} - x\right)}} \, dx. \] ### Step 2: Simplify the expression Using the trigonometric identities, we know: \[ \cos\left(\frac{\pi}{2} - x\right) = \sin x \quad \text{and} \quad \sin\left(\frac{\pi}{2} - x\right) = \cos x. \] Substituting these into the integral gives: \[ I = \int_0^{\frac{\pi}{2}} \frac{3^{\sin x}}{3^{\cos x} + 3^{\sin x}} \, dx. \] ### Step 3: Add the two expressions for \( I \) Now we have two expressions for \( I \): 1. \( I = \int_0^{\frac{\pi}{2}} \frac{3^{\cos x}}{3^{\sin x} + 3^{\cos x}} \, dx \) 2. \( I = \int_0^{\frac{\pi}{2}} \frac{3^{\sin x}}{3^{\cos x} + 3^{\sin x}} \, dx \) Adding these two equations: \[ 2I = \int_0^{\frac{\pi}{2}} \left( \frac{3^{\cos x}}{3^{\sin x} + 3^{\cos x}} + \frac{3^{\sin x}}{3^{\cos x} + 3^{\sin x}} \right) \, dx. \] ### Step 4: Combine the fractions The denominators are the same, so we can combine the numerators: \[ 2I = \int_0^{\frac{\pi}{2}} \frac{3^{\cos x} + 3^{\sin x}}{3^{\sin x} + 3^{\cos x}} \, dx. \] This simplifies to: \[ 2I = \int_0^{\frac{\pi}{2}} 1 \, dx. \] ### Step 5: Evaluate the integral The integral of 1 from 0 to \( \frac{\pi}{2} \) is simply: \[ \int_0^{\frac{\pi}{2}} 1 \, dx = \left[ x \right]_0^{\frac{\pi}{2}} = \frac{\pi}{2} - 0 = \frac{\pi}{2}. \] ### Step 6: Solve for \( I \) Now, substituting back, we have: \[ 2I = \frac{\pi}{2}. \] Dividing both sides by 2 gives: \[ I = \frac{\pi}{4}. \] Thus, the final result is: \[ \boxed{\frac{\pi}{4}}. \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 2

    ICSE|Exercise Section - B|10 Videos
  • MODEL TEST PAPER - 2

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 18

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 3

    ICSE|Exercise SECTION - C|10 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) cos 3x dx

Evaluate : int_(0)^(pi//2) (cos x)/(1+sin^(2) x)dx

Evaluate : int_(0)^(pi//2) sin^(3) x cos x dx

Evaluate int_(0)^(pi//2) (cos^2 x)/(1+sin x cos x)dx .

Using properties of definite integrals, evaluate: int_(0)^(pi//2) (sin x - cos x)/(1+sin x cos x) dx

Evaluate : int_(0)^(pi) |cos x| dx

int_(0)^(pi//2) (1)/(4+3 cos x)dx

Evaluate: int_0^(pi//2)(cos^2x)/(cos^2x+4sin^2x)dx

Evaluate int_(0)^(pi)sin^(3)x*cos^(4)xdx

Evaluate : int_0^(pi/2)(sin^2x)/(sin x+cos x)dx