Home
Class 12
MATHS
Prove that : tan [(pi)/(4) + (1)/(2) cos...

Prove that : `tan [(pi)/(4) + (1)/(2) cos^(-1)""(a)/(b)] + tan[(pi)/(4) - (1)/(2) cos^(-1)""(a)/(b)] = (2b)/(a)`.

Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 2

    ICSE|Exercise Section - B|10 Videos
  • MODEL TEST PAPER - 2

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 18

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 3

    ICSE|Exercise SECTION - C|10 Videos

Similar Questions

Explore conceptually related problems

tan((pi)/(4) +(1)/(2)"cos"^(-1)(a)/(b))+ tan((pi)/(4) - (1)/(2)"cos"^(-1)(a)/(b)) is :

Prove the following: tan[pi/4+1/2cos^(-1)(a/b)]+tan[pi/4-1/2cos^(-1)(a/b)]=(2b)/a

Prove the following: tan[pi/4+1/2cos^(-1)(a/b)]+tan[pi/4-1/2cos^(-1)(a/b)]=(2b)/a

Prove that : tan^(-1) [2 cos(2sin^(-1)(1/2))] = pi/4

"sin^(2)(pi)/(6)+cos^(2)(pi)/(3)-tan^(2)(pi)/(4)=-(1)/(2)"

Prove that: tan(pi/4+A). Tan((3pi)/4)+A=-1

Prove that : tan^(-1)(1/2) + tan^(-1)(1/3) = tan^(-1)(3/5) + tan^(-1)(1/4) = pi/4

Prove that: tan^-1(1/4)+tan^-1(2/9)=1/2 cos^-1(3/5) .

Prove that: tan(pi/3-A).tan(pi/3+A)= (2cos2A+1)/(2cos2A-1)

Prove that sin^(2) (pi/6) + cos^(2) (pi/3) - tan^(2) (pi/4) = - (1)/(2)