Home
Class 12
MATHS
Evaluate: int cos {2 tan^(-1) sqrt((1-x)...

Evaluate: `int cos {2 tan^(-1) sqrt((1-x)/(1+x))}dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \cos(2 \tan^{-1}(\sqrt{\frac{1-x}{1+x}})) \, dx \), we can use a substitution method. Here’s the step-by-step solution: ### Step 1: Substitution Let \( x = \cos(2\theta) \). Then, we differentiate to find \( dx \): \[ dx = -2 \sin(2\theta) \, d\theta \] ### Step 2: Rewrite the Integral Now, we need to rewrite the integral in terms of \( \theta \): \[ \int \cos(2 \tan^{-1}(\sqrt{\frac{1 - \cos(2\theta)}{1 + \cos(2\theta)}})) \, dx \] Using the identity \( \tan^{-1}(t) = \frac{1}{2} \tan^{-1}(\frac{2t}{1-t^2}) \), we can simplify \( \tan^{-1}(\sqrt{\frac{1 - \cos(2\theta)}{1 + \cos(2\theta)}}) \). ### Step 3: Simplify the Argument of Cosine Using the trigonometric identities: - \( 1 - \cos(2\theta) = 2\sin^2(\theta) \) - \( 1 + \cos(2\theta) = 2\cos^2(\theta) \) This gives us: \[ \sqrt{\frac{1 - \cos(2\theta)}{1 + \cos(2\theta)}} = \sqrt{\frac{2\sin^2(\theta)}{2\cos^2(\theta)}} = \tan(\theta) \] Thus, we have: \[ \cos(2 \tan^{-1}(\tan(\theta))) = \cos(2\theta) \] ### Step 4: Substitute Back into the Integral Now substituting back, we have: \[ \int \cos(2\theta) (-2 \sin(2\theta)) \, d\theta \] This simplifies to: \[ -2 \int \cos(2\theta) \sin(2\theta) \, d\theta \] ### Step 5: Use Trigonometric Identity Using the identity \( \sin(2\theta) \cos(2\theta) = \frac{1}{2} \sin(4\theta) \): \[ -2 \int \frac{1}{2} \sin(4\theta) \, d\theta = -\int \sin(4\theta) \, d\theta \] ### Step 6: Integrate The integral of \( \sin(4\theta) \) is: \[ -\int \sin(4\theta) \, d\theta = \frac{1}{4} \cos(4\theta) + C \] ### Step 7: Substitute Back to x Recall that \( x = \cos(2\theta) \). We need to express \( \cos(4\theta) \) in terms of \( x \): \[ \cos(4\theta) = 2\cos^2(2\theta) - 1 = 2x^2 - 1 \] Thus, we have: \[ \frac{1}{4} (2x^2 - 1) + C = \frac{x^2}{2} - \frac{1}{4} + C \] ### Final Answer The final result is: \[ \int \cos(2 \tan^{-1}(\sqrt{\frac{1-x}{1+x}})) \, dx = \frac{x^2}{2} + C' \] where \( C' \) is a constant of integration.
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 2

    ICSE|Exercise Section - B|10 Videos
  • MODEL TEST PAPER - 2

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 18

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 3

    ICSE|Exercise SECTION - C|10 Videos

Similar Questions

Explore conceptually related problems

int tan^-1(sqrt((1-x)/(1+x)) dx

Evaluate: int cos^(-1) sqrt((x)/(x+1))dx

Evaluate : int"tan^(-1)sqrt((1-x)/(1+x))dx

Evaluate: int tan ^(-1) sqrt x dx

Evaluate: int cos^(-1)sqrt(x)dx

Evaluate: int(xsin^(-1)x)/(sqrt(1-x^2))dx

Evaluate: int(sin^(-1)x)/(sqrt(1-x^2))\ dx

Evaluate : int_1^16tan^(- 1)sqrt(sqrt(x)-1)dx

Evaluate: int(xsin^(-1)x)/(sqrt(1-x^2))\ dx

Evaluate : int ( tan (sin^(-1)x))/(sqrt(1-x^(2))) " dx"