Home
Class 12
MATHS
Evaluate : int(0)^(1) cot^(-1) (1-x + x^...

Evaluate : `int_(0)^(1) cot^(-1) (1-x + x^(2))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int_{0}^{1} \cot^{-1}(1 - x + x^2) \, dx \), we can follow these steps: ### Step 1: Use the identity for cotangent inverse We can use the identity that relates cotangent inverse to tangent inverse: \[ \cot^{-1}(x) = \tan^{-1}\left(\frac{1}{x}\right) \] Thus, we can rewrite the integral as: \[ I = \int_{0}^{1} \tan^{-1}\left(\frac{1}{1 - x + x^2}\right) \, dx \] ### Step 2: Simplify the argument of tangent inverse Next, we simplify the expression \( 1 - x + x^2 \): \[ 1 - x + x^2 = x^2 - x + 1 \] This can be factored or rewritten, but it’s already in a suitable form for integration. ### Step 3: Use the identity for the sum of angles We can use the identity for the sum of angles in tangent inverse: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a + b}{1 - ab}\right) \] We will express \( \tan^{-1}(x) + \tan^{-1}(1 - x) \) in this form. ### Step 4: Set up the integral We can express the integral as: \[ I = \int_{0}^{1} \left( \tan^{-1}(x) + \tan^{-1}(1 - x) \right) \, dx \] Using the property of definite integrals: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(b - x) \, dx \] This allows us to write: \[ I = \int_{0}^{1} \tan^{-1}(x) \, dx + \int_{0}^{1} \tan^{-1}(1 - x) \, dx \] ### Step 5: Evaluate the integral We can evaluate \( \int_{0}^{1} \tan^{-1}(x) \, dx \) using integration by parts: Let \( u = \tan^{-1}(x) \) and \( dv = dx \). Then \( du = \frac{1}{1 + x^2} \, dx \) and \( v = x \). Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] We have: \[ \int_{0}^{1} \tan^{-1}(x) \, dx = \left[ x \tan^{-1}(x) \right]_{0}^{1} - \int_{0}^{1} \frac{x}{1 + x^2} \, dx \] ### Step 6: Evaluate the boundary terms Evaluating the boundary terms: \[ \left[ x \tan^{-1}(x) \right]_{0}^{1} = 1 \cdot \frac{\pi}{4} - 0 = \frac{\pi}{4} \] ### Step 7: Evaluate the remaining integral Now we need to evaluate: \[ \int_{0}^{1} \frac{x}{1 + x^2} \, dx \] Using the substitution \( t = 1 + x^2 \), we find: \[ dt = 2x \, dx \quad \Rightarrow \quad dx = \frac{dt}{2x} \] The limits change from \( x = 0 \) to \( x = 1 \) which corresponds to \( t = 1 \) to \( t = 2 \): \[ \int_{1}^{2} \frac{1}{t} \cdot \frac{dt}{2} = \frac{1}{2} \ln(t) \bigg|_{1}^{2} = \frac{1}{2} (\ln(2) - \ln(1)) = \frac{1}{2} \ln(2) \] ### Step 8: Combine results Putting it all together: \[ \int_{0}^{1} \tan^{-1}(x) \, dx = \frac{\pi}{4} - \frac{1}{2} \ln(2) \] Thus, \[ I = 2 \left( \frac{\pi}{4} - \frac{1}{2} \ln(2) \right) = \frac{\pi}{2} - \ln(2) \] ### Final Answer The value of the integral is: \[ \int_{0}^{1} \cot^{-1}(1 - x + x^2) \, dx = \frac{\pi}{2} - \ln(2) \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 2

    ICSE|Exercise Section - B|10 Videos
  • MODEL TEST PAPER - 2

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 18

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 3

    ICSE|Exercise SECTION - C|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_0^1cot^(-1)(1-x+x^2)dx

Evaluate : int_(0)^(oo)(cot^(-1)x)^(2)dx

Evaluate: int_(0)^(1) log (1/x-1)dx

The value of the integral int_(0)^(1) cot^(-1) (1-x+x^(2))dx , is

Evaluate : int_(0)^(1)x(1-x)^(n)dx

Evaluate : int_(0)^(1)log ((1)/(x) -1) dx

Evaluate : int_(0)^(1) (1-x)^(3//2) dx

Evaluate : int_(0)^(1)(tan^(-1)x)/(1+x^2)dx

Evaluate: int_(0)^(1//2) (sin^(-1)x)/((1-x^(2))^(3//2)) dx

Evaluate : int_(0)^(1)((tan^(-1)x)^(2))/(1+x^(2))dx