Home
Class 12
MATHS
If f(x) = |(1,x,x+1),(2x,x(x-1),x(x+1)),...

If `f(x) = |(1,x,x+1),(2x,x(x-1),x(x+1)),(3x(x-1),x(x-1)(x-2),x(x+1)(x-1))|`, using properties of determinant, find f(2x) - f(x).

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant function \( f(x) \) and find \( f(2x) - f(x) \). ### Step 1: Write down the determinant function We have: \[ f(x) = \begin{vmatrix} 1 & 2x & 3x \\ x & x(x-1) & x(x+1) \\ x(x-1) & x(x-1)(x-2) & x(x+1)(x-1) \end{vmatrix} \] ### Step 2: Factor out common terms from the columns From the second column, we can factor out \( x \): \[ f(x) = \begin{vmatrix} 1 & 2x & 3x \\ x & x(x-1) & x(x+1) \\ x(x-1) & x(x-1)(x-2) & x(x+1)(x-1) \end{vmatrix} = x \cdot \begin{vmatrix} 1 & 2 & 3 \\ 1 & (x-1) & (x+1) \\ (x-1) & (x-1)(x-2) & (x+1)(x-1) \end{vmatrix} \] ### Step 3: Factor out common terms from the third column Now, we can factor out \( (x+1) \) from the third column: \[ f(x) = x(x+1) \cdot \begin{vmatrix} 1 & 2 & 3 \\ 1 & (x-1) & 1 \\ (x-1) & (x-1)(x-2) & (x-1) \end{vmatrix} \] ### Step 4: Simplify the determinant Next, we can simplify the determinant by performing row operations. We can subtract the first row from the second and third rows: \[ f(x) = x(x+1) \cdot \begin{vmatrix} 1 & 2 & 3 \\ 0 & (x-1)-2 & 1-3 \\ 0 & (x-1)(x-2)-(x-1) & (x-1)-3 \end{vmatrix} \] This simplifies to: \[ f(x) = x(x+1) \cdot \begin{vmatrix} 1 & 2 & 3 \\ 0 & x-3 & -2 \\ 0 & (x-1)(x-2)-(x-1) & -2 \end{vmatrix} \] ### Step 5: Evaluate the determinant The determinant of a matrix with a row of zeros is zero: \[ f(x) = 0 \] ### Step 6: Evaluate \( f(2x) \) Since \( f(x) = 0 \), it follows that: \[ f(2x) = 0 \] ### Step 7: Calculate \( f(2x) - f(x) \) Now, we can find: \[ f(2x) - f(x) = 0 - 0 = 0 \] ### Final Answer Thus, the final result is: \[ f(2x) - f(x) = 0 \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 2

    ICSE|Exercise Section - B|10 Videos
  • MODEL TEST PAPER - 2

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 18

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 3

    ICSE|Exercise SECTION - C|10 Videos

Similar Questions

Explore conceptually related problems

If f(x) =|(1,x,(x+1)),(2x,x(x-1),(x+1)x),(3x(x-1), x(x-1)(x-2),x(x-1)(x+1))| then f(50)+f(51)..f(99) is equal to

If f(x)= |{:(1,,x,,x+1),(2x,,x(x-1),,(x+1)x),(3x(x-1),,x(x-1)(x-2),,(x+1)x(x-1)):}| then the value of f(500) "_____"

If f(x)=|(1,x,x+1),(2x,x(x-1),(x+1)x),(3x(x-1),x(x-1)(x-2),(x+1)x(x-1))|, then f(100) is equal to - (i) 0 (ii) 1 (iii) 100 (iv) -100

If f(x)=|\(1,x,x+1),(2x,x(x-1),(x+1)x,3x(x-1),x(x-1)(x-2),(x+1)x(x-1))| then f(100) is equal to (A) 0 (B) 1 (C) 100 (D) -100

If f(x)=|[a-1, 0,a] , [x,a-1,a], [x^2a, x, a]| , using properties of determinants, find the value of f(2x)-f(x) .

If f(x)=|[a,-1, 0],[a x, a,-1],[a x^2,a x, a]|,using properties of determinants find the value of f(2x) − f(x).

If f(x)=|[a,-1 ,0],[ax,a,-1],[a x^2,a x, a]|, using properties of determinants, find the value of f(2x)-f(x)dot

If f(x)=|(1, x, x+1), (2x, x(x-1), (x+1)x), (3x(x-1), x(x-1)(x-2), (x+1)x(x-1))| then f(5000) is equal to 0 b. 1 c. 500 d. -500

If f(x)= |1 x x+1 2x x(x-1)(x+1)x3x(x-1)x(x-1)(x-2)(x+1)x(x-1)| then f(500) is equal to a. 0 b. 1 c. 500 d. -500

If f(x)=|((1+x)^a,(1+2x)^b,1),(1,(1+x)^a,(1+2x)^b), ((1+2x)^b,1,(1+x)^a)| then find constant term and coefficient of x