Home
Class 12
MATHS
Find the total revenue function for the ...

Find the total revenue function for the marginal revenue function given by `M R = 20 e^(-(x)/(10))(1-(x)/(10))`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the total revenue function \( R(x) \) from the given marginal revenue function \( MR(x) = 20 e^{-\frac{x}{10}} \left(1 - \frac{x}{10}\right) \), we need to integrate the marginal revenue function. ### Step-by-Step Solution: 1. **Write down the marginal revenue function**: \[ MR(x) = 20 e^{-\frac{x}{10}} \left(1 - \frac{x}{10}\right) \] 2. **Set up the integral for total revenue**: The total revenue function \( R(x) \) is the integral of the marginal revenue function: \[ R(x) = \int MR(x) \, dx = \int 20 e^{-\frac{x}{10}} \left(1 - \frac{x}{10}\right) \, dx \] 3. **Distribute the terms inside the integral**: \[ R(x) = \int 20 e^{-\frac{x}{10}} \, dx - \int 2x e^{-\frac{x}{10}} \, dx \] 4. **Integrate the first term**: To integrate \( \int 20 e^{-\frac{x}{10}} \, dx \), we can use the substitution \( u = -\frac{x}{10} \), which gives \( du = -\frac{1}{10} dx \) or \( dx = -10 du \): \[ \int 20 e^{-\frac{x}{10}} \, dx = -200 e^{-\frac{x}{10}} + C_1 \] 5. **Integrate the second term**: For \( \int 2x e^{-\frac{x}{10}} \, dx \), we can use integration by parts: Let \( u = x \) and \( dv = 2 e^{-\frac{x}{10}} dx \). Then \( du = dx \) and \( v = -20 e^{-\frac{x}{10}} \). Applying integration by parts: \[ \int 2x e^{-\frac{x}{10}} \, dx = -20x e^{-\frac{x}{10}} + \int 20 e^{-\frac{x}{10}} \, dx \] We already calculated \( \int 20 e^{-\frac{x}{10}} \, dx \): \[ = -20x e^{-\frac{x}{10}} - 200 e^{-\frac{x}{10}} + C_2 \] 6. **Combine the results**: Now, substituting back into the total revenue function: \[ R(x) = -200 e^{-\frac{x}{10}} + 20x e^{-\frac{x}{10}} + 200 e^{-\frac{x}{10}} + C \] The constants will cancel out, leaving: \[ R(x) = 20x e^{-\frac{x}{10}} + C \] 7. **Determine the constant of integration \( C \)**: To find \( C \), we can use the condition that when \( x = 0 \), \( R(0) = 0 \): \[ R(0) = 20(0)e^{0} + C = 0 \implies C = 0 \] 8. **Final total revenue function**: Thus, the total revenue function is: \[ R(x) = 20x e^{-\frac{x}{10}} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 2

    ICSE|Exercise Section - B|10 Videos
  • MODEL TEST PAPER - 18

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 3

    ICSE|Exercise SECTION - C|10 Videos

Similar Questions

Explore conceptually related problems

If the marginal revenue of a commodity is given by MR =20e^(-x/10)(1-x/10) , find the demand function .

If the revenue function f(x) = 1/x+2 , then what is the marginal revenue function?

If the revenue function is R(x)= (2)/(x) +x+1 , then find the marginal revenue function.

If the marginal revenue (MR) is 9-6x^(2)+2x , then revenue function is

Find (dy)/(dx) of the functions given by x y=e^((x-y))

If the marginal revenue is given by MR=9-x^(2) then revenue function is

If the revenue function is R(x) = 3x^(3) - 8x + 2 , then the average revenue function is

If the demand function is p(x) = 20 -(x)/(2) then the marginal revenue when x = 10 is

If the marginal revenue function of a commodity is MR=2x-9x^(2) then the revenue function is

Find the domain of definition of the function f(x) given by f(x)=1/(log_(10)(1-x))+sqrt(x+2) .