Evaluate : ` underset( x to 0 ) lim (x) ^((1)/(log x))`
A
` 1`
B
` 0`
C
` infty `
D
` e`
Text Solution
AI Generated Solution
The correct Answer is:
To evaluate the limit \( \lim_{x \to 0} x^{\frac{1}{\log x}} \), we can follow these steps:
### Step 1: Rewrite the limit
Let \( y = \lim_{x \to 0} x^{\frac{1}{\log x}} \).
### Step 2: Take the natural logarithm
Taking the natural logarithm of both sides, we have:
\[
\log y = \lim_{x \to 0} \log\left(x^{\frac{1}{\log x}}\right)
\]
### Step 3: Use logarithmic properties
Using the property of logarithms that states \( \log(a^b) = b \cdot \log a \), we can rewrite the limit:
\[
\log y = \lim_{x \to 0} \frac{1}{\log x} \cdot \log x
\]
### Step 4: Simplify the expression
Notice that \( \frac{\log x}{\log x} = 1 \) (as long as \( \log x \neq 0 \)), so:
\[
\log y = \lim_{x \to 0} 1 = 1
\]
### Step 5: Exponentiate to solve for \( y \)
Now, we exponentiate both sides to solve for \( y \):
\[
y = e^1 = e
\]
### Conclusion
Thus, the value of the limit is:
\[
\lim_{x \to 0} x^{\frac{1}{\log x}} = e
\]
Topper's Solved these Questions
MODEL TEST PAPER -1
ICSE|Exercise Secton - C|11 Videos
MODEL TEST PAPER 15
ICSE|Exercise SECTIONS-C|11 Videos
Similar Questions
Explore conceptually related problems
Evaluate underset(x to oo) lim ([x])/(2x)
Evaluate: underset(xrarr0)lim((1-x)^n-1)/(x)
Evaluate underset(x to -oo)lim(sqrt(x^(2)+3x+1))/(2x+4)
f(x)= |{:(cos x,,x,,1),(2sin x ,,x^(2),,2x),(tanx ,, x,,1):}| then find the value of underset(xto 0)(" lim ") (f(x))/(x)
If underset(xto0)lim(f(x))/(sin^(2)x)=8,underset(xto0)lim(g(x))/(2cosx-xe^(x)+x^(3)+x-2)=lamda" and " underset(xto0)lim(1+2f(x))^((1)/(g(x)))=(1)/(e)," then" The value of lamda is