Home
Class 12
MATHS
Evaluate : underset( x to 0 ) lim (x)...

Evaluate : ` underset( x to 0 ) lim (x) ^((1)/(log x))`

A

` 1`

B

` 0`

C

` infty `

D

` e`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{x \to 0} x^{\frac{1}{\log x}} \), we can follow these steps: ### Step 1: Rewrite the limit Let \( y = \lim_{x \to 0} x^{\frac{1}{\log x}} \). ### Step 2: Take the natural logarithm Taking the natural logarithm of both sides, we have: \[ \log y = \lim_{x \to 0} \log\left(x^{\frac{1}{\log x}}\right) \] ### Step 3: Use logarithmic properties Using the property of logarithms that states \( \log(a^b) = b \cdot \log a \), we can rewrite the limit: \[ \log y = \lim_{x \to 0} \frac{1}{\log x} \cdot \log x \] ### Step 4: Simplify the expression Notice that \( \frac{\log x}{\log x} = 1 \) (as long as \( \log x \neq 0 \)), so: \[ \log y = \lim_{x \to 0} 1 = 1 \] ### Step 5: Exponentiate to solve for \( y \) Now, we exponentiate both sides to solve for \( y \): \[ y = e^1 = e \] ### Conclusion Thus, the value of the limit is: \[ \lim_{x \to 0} x^{\frac{1}{\log x}} = e \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER -1

    ICSE|Exercise Secton - C|11 Videos
  • MODEL TEST PAPER 15

    ICSE|Exercise SECTIONS-C|11 Videos

Similar Questions

Explore conceptually related problems

Evaluate underset(x to oo) lim ([x])/(2x)

Evaluate: underset(xrarr0)lim((1-x)^n-1)/(x)

Evaluate underset(x to -oo)lim(sqrt(x^(2)+3x+1))/(2x+4)

f(x)= |{:(cos x,,x,,1),(2sin x ,,x^(2),,2x),(tanx ,, x,,1):}| then find the value of underset(xto 0)(" lim ") (f(x))/(x)

Evaluate underset(xto1)lim(a^(x-1)-1)/(sinpix).

Evaluate underset(xto1)"lim"(x^(4)-sqrt(x))/(sqrt(x)-1) .

If underset(xto0)lim(f(x))/(sin^(2)x)=8,underset(xto0)lim(g(x))/(2cosx-xe^(x)+x^(3)+x-2)=lamda" and " underset(xto0)lim(1+2f(x))^((1)/(g(x)))=(1)/(e)," then" The value of lamda is

Evaluate: underset(x rarr 0)("lim") ((729)^x-(243)^x-(81)^x+9^x+3^x-1)/(x^3)

Using L. Hospital.s rule, evaluate: lim _(x to 0) "" (x e ^(x) -log ( 1 + x ))/( x ^(2))

lim_(xrarr0)(x^3 log x)