Home
Class 12
MATHS
If y = tan ^(-1) ((2x)/( 1+15x^(2)) ) ,...

If `y = tan ^(-1) ((2x)/( 1+15x^(2)) ) , and (dy)/(dx) = ( lambda)/( 1+25x^(2)) -( mu)/( 1+9x^(2)) ," then " lambda + mu ` equal

A

`8`

B

` 2`

C

` 10 `

D

` 34`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ y = \tan^{-1}\left(\frac{2x}{1 + 15x^2}\right) \] We will use the identity for the tangent inverse function: \[ \tan^{-1}\left(\frac{x - y}{1 + xy}\right) = \tan^{-1}(x) - \tan^{-1}(y) \] ### Step 1: Rewrite the expression We can rewrite \( \frac{2x}{1 + 15x^2} \) in a form that allows us to apply the identity. Notice that we can express \( 2x \) as \( 5x - 3x \) and \( 15x^2 \) as \( 3x \cdot 5x \): \[ y = \tan^{-1}\left(\frac{5x - 3x}{1 + 3x \cdot 5x}\right) \] ### Step 2: Apply the identity Using the identity, we can separate the terms: \[ y = \tan^{-1}(5x) - \tan^{-1}(3x) \] ### Step 3: Differentiate \( y \) Now, we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{d}{dx}[\tan^{-1}(5x)] - \frac{d}{dx}[\tan^{-1}(3x)] \] Using the derivative of \( \tan^{-1}(u) \), which is \( \frac{1}{1 + u^2} \cdot \frac{du}{dx} \): \[ \frac{dy}{dx} = \frac{1}{1 + (5x)^2} \cdot 5 - \frac{1}{1 + (3x)^2} \cdot 3 \] ### Step 4: Simplify the derivatives Calculating the derivatives: \[ \frac{dy}{dx} = \frac{5}{1 + 25x^2} - \frac{3}{1 + 9x^2} \] ### Step 5: Compare with the given expression We are given that: \[ \frac{dy}{dx} = \frac{\lambda}{1 + 25x^2} - \frac{\mu}{1 + 9x^2} \] By comparing both expressions, we can identify: \[ \lambda = 5 \quad \text{and} \quad \mu = 3 \] ### Step 6: Find \( \lambda + \mu \) Now, we can find \( \lambda + \mu \): \[ \lambda + \mu = 5 + 3 = 8 \] ### Final Answer Thus, the value of \( \lambda + \mu \) is: \[ \boxed{8} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER -1

    ICSE|Exercise Secton - C|11 Videos
  • MODEL TEST PAPER 15

    ICSE|Exercise SECTIONS-C|11 Videos

Similar Questions

Explore conceptually related problems

If y= "tan"^(-1) (2x)/(1-x^(2)) , prove that (dy)/(dx)= (2)/(1 + x^(2))

If y= tan ^(-1) ((x)/(1+ sqrt(1- x ^(2)))), |x|le 1, then (dy)/(dx) at ((1)/(2)) is:

If y = ( tan x)/( 1+ tan^2 x), Prove that (dy)/(dx) = cos 2x.

If y = tan^(-1) (sec x - tan x ) , "then" (dy)/(dx) is equal to

If y= tan ^-1 ((x)/sqrt(a^2-x^2)) then dy/dx =?

if y = tan^-1(2^x/(1+2^(2x+1))) then dy/dx at x =0 is

if y=(1+1/x^(2))/(1-1/(x)^(2)) ,then (dy)/(dx) is equal to

If y=sum_(r=1)^(x) tan^(-1)((1)/(1+r+r^(2))) , then (dy)/(dx) is equal to

(1+x^(2))tan^(-1)x*(dy)/(dx)+2=0

If y= "tan"^(-1) (4x)/(1+5x^(2)) + "tan"^(-1) (2 + 3x)/(3-2x) , then prove that (dy)/(dx)= (5)/(1+25x^(2))