If `y = tan ^(-1) ((2x)/( 1+15x^(2)) ) , and (dy)/(dx) = ( lambda)/( 1+25x^(2)) -( mu)/( 1+9x^(2)) ," then " lambda + mu ` equal
A
`8`
B
` 2`
C
` 10 `
D
` 34`
Text Solution
AI Generated Solution
The correct Answer is:
To solve the problem, we start with the given equation:
\[ y = \tan^{-1}\left(\frac{2x}{1 + 15x^2}\right) \]
We will use the identity for the tangent inverse function:
\[ \tan^{-1}\left(\frac{x - y}{1 + xy}\right) = \tan^{-1}(x) - \tan^{-1}(y) \]
### Step 1: Rewrite the expression
We can rewrite \( \frac{2x}{1 + 15x^2} \) in a form that allows us to apply the identity. Notice that we can express \( 2x \) as \( 5x - 3x \) and \( 15x^2 \) as \( 3x \cdot 5x \):
\[
y = \tan^{-1}\left(\frac{5x - 3x}{1 + 3x \cdot 5x}\right)
\]
### Step 2: Apply the identity
Using the identity, we can separate the terms:
\[
y = \tan^{-1}(5x) - \tan^{-1}(3x)
\]
### Step 3: Differentiate \( y \)
Now, we differentiate \( y \) with respect to \( x \):
\[
\frac{dy}{dx} = \frac{d}{dx}[\tan^{-1}(5x)] - \frac{d}{dx}[\tan^{-1}(3x)]
\]
Using the derivative of \( \tan^{-1}(u) \), which is \( \frac{1}{1 + u^2} \cdot \frac{du}{dx} \):
\[
\frac{dy}{dx} = \frac{1}{1 + (5x)^2} \cdot 5 - \frac{1}{1 + (3x)^2} \cdot 3
\]
### Step 4: Simplify the derivatives
Calculating the derivatives:
\[
\frac{dy}{dx} = \frac{5}{1 + 25x^2} - \frac{3}{1 + 9x^2}
\]
### Step 5: Compare with the given expression
We are given that:
\[
\frac{dy}{dx} = \frac{\lambda}{1 + 25x^2} - \frac{\mu}{1 + 9x^2}
\]
By comparing both expressions, we can identify:
\[
\lambda = 5 \quad \text{and} \quad \mu = 3
\]
### Step 6: Find \( \lambda + \mu \)
Now, we can find \( \lambda + \mu \):
\[
\lambda + \mu = 5 + 3 = 8
\]
### Final Answer
Thus, the value of \( \lambda + \mu \) is:
\[
\boxed{8}
\]
Topper's Solved these Questions
MODEL TEST PAPER -1
ICSE|Exercise Secton - C|11 Videos
MODEL TEST PAPER 15
ICSE|Exercise SECTIONS-C|11 Videos
Similar Questions
Explore conceptually related problems
If y= "tan"^(-1) (2x)/(1-x^(2)) , prove that (dy)/(dx)= (2)/(1 + x^(2))
If y= tan ^(-1) ((x)/(1+ sqrt(1- x ^(2)))), |x|le 1, then (dy)/(dx) at ((1)/(2)) is:
If y = ( tan x)/( 1+ tan^2 x), Prove that (dy)/(dx) = cos 2x.
If y = tan^(-1) (sec x - tan x ) , "then" (dy)/(dx) is equal to
If y= tan ^-1 ((x)/sqrt(a^2-x^2)) then dy/dx =?
if y = tan^-1(2^x/(1+2^(2x+1))) then dy/dx at x =0 is
if y=(1+1/x^(2))/(1-1/(x)^(2)) ,then (dy)/(dx) is equal to
If y=sum_(r=1)^(x) tan^(-1)((1)/(1+r+r^(2))) , then (dy)/(dx) is equal to
(1+x^(2))tan^(-1)x*(dy)/(dx)+2=0
If y= "tan"^(-1) (4x)/(1+5x^(2)) + "tan"^(-1) (2 + 3x)/(3-2x) , then prove that (dy)/(dx)= (5)/(1+25x^(2))