To find \(\frac{dy}{dx}\) given \(x = ct\) and \(y = \frac{c}{t}\), we can use the chain rule. Here’s a step-by-step solution:
### Step 1: Differentiate \(y\) with respect to \(t\)
Given:
\[
y = \frac{c}{t}
\]
We differentiate \(y\) with respect to \(t\):
\[
\frac{dy}{dt} = \frac{d}{dt}\left(\frac{c}{t}\right) = -\frac{c}{t^2}
\]
### Step 2: Differentiate \(x\) with respect to \(t\)
Given:
\[
x = ct
\]
We differentiate \(x\) with respect to \(t\):
\[
\frac{dx}{dt} = c
\]
### Step 3: Use the chain rule to find \(\frac{dy}{dx}\)
Using the chain rule:
\[
\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx}
\]
We already have \(\frac{dy}{dt}\) and \(\frac{dx}{dt}\). To find \(\frac{dt}{dx}\), we take the reciprocal of \(\frac{dx}{dt}\):
\[
\frac{dt}{dx} = \frac{1}{\frac{dx}{dt}} = \frac{1}{c}
\]
Now substituting the values:
\[
\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = \left(-\frac{c}{t^2}\right) \cdot \left(\frac{1}{c}\right)
\]
### Step 4: Simplify the expression
\[
\frac{dy}{dx} = -\frac{c}{t^2} \cdot \frac{1}{c} = -\frac{1}{t^2}
\]
### Final Result
Thus, the derivative \(\frac{dy}{dx}\) is:
\[
\frac{dy}{dx} = -\frac{1}{t^2}
\]
---
Topper's Solved these Questions
MODEL TEST PAPER -1
ICSE|Exercise Secton - C|11 Videos
MODEL TEST PAPER 15
ICSE|Exercise SECTIONS-C|11 Videos
Similar Questions
Explore conceptually related problems
Find (dy)/(dx) , if x=a t^2, y=2a t .
Find (dy)/(dx) , when x=a t^2 and y=2\ a t
Find (dy)/(dx), if y=12(1-cost), x=10(t-sint)
Find (dy)/(dx) , when x=a\ cos^3t and y=at .
find (dy)/(dx) , when y = sin u ,, u = e^(sqrt t) and t = log x
Find (dy)/(dx) , when x=(2t)/(1+t^2) and y=(1-t^2)/(1+t^2)
Find (dy)/(dx), when x=(3a t)/(1+t^2)" and "y =(3a t^2)/(1+t^2)
Find (dy)/(dx) , when x=(1-t^2)/(1+t^2) and y=(2t)/(1+t^2)