Home
Class 12
MATHS
Find (dy)/(dx) , if x = c t, y= ( c )/...

Find ` (dy)/(dx) , if x = c t, y= ( c )/( t) `

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) given \(x = ct\) and \(y = \frac{c}{t}\), we can use the chain rule. Here’s a step-by-step solution: ### Step 1: Differentiate \(y\) with respect to \(t\) Given: \[ y = \frac{c}{t} \] We differentiate \(y\) with respect to \(t\): \[ \frac{dy}{dt} = \frac{d}{dt}\left(\frac{c}{t}\right) = -\frac{c}{t^2} \] ### Step 2: Differentiate \(x\) with respect to \(t\) Given: \[ x = ct \] We differentiate \(x\) with respect to \(t\): \[ \frac{dx}{dt} = c \] ### Step 3: Use the chain rule to find \(\frac{dy}{dx}\) Using the chain rule: \[ \frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} \] We already have \(\frac{dy}{dt}\) and \(\frac{dx}{dt}\). To find \(\frac{dt}{dx}\), we take the reciprocal of \(\frac{dx}{dt}\): \[ \frac{dt}{dx} = \frac{1}{\frac{dx}{dt}} = \frac{1}{c} \] Now substituting the values: \[ \frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = \left(-\frac{c}{t^2}\right) \cdot \left(\frac{1}{c}\right) \] ### Step 4: Simplify the expression \[ \frac{dy}{dx} = -\frac{c}{t^2} \cdot \frac{1}{c} = -\frac{1}{t^2} \] ### Final Result Thus, the derivative \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = -\frac{1}{t^2} \] ---
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER -1

    ICSE|Exercise Secton - C|11 Videos
  • MODEL TEST PAPER 15

    ICSE|Exercise SECTIONS-C|11 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) , if x=a t^2, y=2a t .

Find (dy)/(dx) , when x=a t^2 and y=2\ a t

Find (dy)/(dx), if y=12(1-cost), x=10(t-sint)

Find (dy)/(dx) , when x=a\ cos^3t and y=at .

find (dy)/(dx) , when y = sin u ,, u = e^(sqrt t) and t = log x

Find (dy)/(dx) , when x=(2t)/(1+t^2) and y=(1-t^2)/(1+t^2)

Find (dy)/(dx), when x=(3a t)/(1+t^2)" and "y =(3a t^2)/(1+t^2)

Find (dy)/(dx) , when x=(1-t^2)/(1+t^2) and y=(2t)/(1+t^2)

9.Find: dy/dx if x=t^2 y=t-t^3/3

If x y=c^2 , find (dy)/(dx)