Home
Class 12
MATHS
Evaluate: int ( dx)/( sqrt(x+1) +""^(3)...

Evaluate: ` int ( dx)/( sqrt(x+1) +""^(3) sqrt(x+1))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int \frac{dx}{\sqrt{x+1} + (x+1)^{\frac{1}{3}}} \] we will follow a systematic approach using substitution. ### Step 1: Rewrite the Integral First, we rewrite the integral for clarity: \[ \int \frac{dx}{(x+1)^{\frac{1}{2}} + (x+1)^{\frac{1}{3}}} \] ### Step 2: Substitution We will use the substitution \( t = (x + 1)^{\frac{1}{6}} \). This means \( x + 1 = t^6 \) and thus \( x = t^6 - 1 \). Now, we differentiate \( x + 1 \): \[ dx = 6t^5 dt \] ### Step 3: Substitute in the Integral Now we substitute \( x + 1 \) and \( dx \) in the integral: \[ \int \frac{6t^5 dt}{t^3 + t^2} \] ### Step 4: Simplify the Integral We can factor out \( t^2 \) from the denominator: \[ = \int \frac{6t^5 dt}{t^2(t + 1)} = 6 \int \frac{t^3 dt}{t + 1} \] ### Step 5: Split the Integral Now we can split the integral into two parts: \[ = 6 \int \left(t^2 - 1 + \frac{1}{t + 1}\right) dt \] ### Step 6: Integrate Each Term Now we integrate each term separately: 1. \( 6 \int t^2 dt = 6 \cdot \frac{t^3}{3} = 2t^3 \) 2. \( 6 \int -1 dt = -6t \) 3. \( 6 \int \frac{1}{t + 1} dt = 6 \log(t + 1) \) Combining these results, we have: \[ 2t^3 - 6t + 6 \log(t + 1) + C \] ### Step 7: Substitute Back Now we substitute back \( t = (x + 1)^{\frac{1}{6}} \): \[ = 2((x + 1)^{\frac{1}{6}})^3 - 6((x + 1)^{\frac{1}{6}}) + 6 \log((x + 1)^{\frac{1}{6}} + 1) + C \] This simplifies to: \[ = 2(x + 1)^{\frac{1}{2}} - 6(x + 1)^{\frac{1}{6}} + 6 \log((x + 1)^{\frac{1}{6}} + 1) + C \] ### Final Answer Thus, the evaluated integral is: \[ 2(x + 1)^{\frac{1}{2}} - 6(x + 1)^{\frac{1}{6}} + 6 \log((x + 1)^{\frac{1}{6}} + 1) + C \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER -1

    ICSE|Exercise Secton - C|11 Videos
  • MODEL TEST PAPER 15

    ICSE|Exercise SECTIONS-C|11 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(dx)/(sqrt(1-x^2))

Evaluate: int(dx)/(x^3sqrt(x^2-1))

Evaluate: int(1-x)\ sqrt(x)\ dx

Evaluate: int(x-1)/(sqrt(x^2+1))\ dx

Evaluate: int(x+1)/(sqrt(x^2+1))\ dx

Evaluate: int1/((x-3)sqrt(x+1dx))

Evaluate: int(5x+3)sqrt(2x-1)\ dx

Evaluate: int(1)/((sqrt(2)+x))dx=

Evaluate int(1)/(x+sqrt(x))dx

Evaluate: int(x^5)/(sqrt(1+x^3))\ dx