Home
Class 12
MATHS
Evaluate : int (-1) ^(1) (dx)/( e^(x)...

Evaluate : ` int _(-1) ^(1) (dx)/( e^(x) + 1) dx `

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_{-1}^{1} \frac{dx}{e^x + 1}, \] we can follow these steps: ### Step 1: Rewrite the Integral We can rewrite the integrand by adding and subtracting \( e^x \): \[ I = \int_{-1}^{1} \left( \frac{1 + e^x}{e^x + 1} - \frac{e^x}{e^x + 1} \right) dx. \] ### Step 2: Split the Integral Now, we can split the integral into two parts: \[ I = \int_{-1}^{1} \frac{1 + e^x}{e^x + 1} dx - \int_{-1}^{1} \frac{e^x}{e^x + 1} dx. \] ### Step 3: Simplify the First Integral The first integral simplifies to: \[ \int_{-1}^{1} 1 \, dx = 2. \] ### Step 4: Evaluate the Second Integral For the second integral, we can use the substitution \( t = e^x + 1 \). Then, we have: \[ dt = e^x \, dx \quad \Rightarrow \quad dx = \frac{dt}{e^x} = \frac{dt}{t - 1}. \] When \( x = -1 \), \( t = e^{-1} + 1 = \frac{1}{e} + 1 \) and when \( x = 1 \), \( t = e^1 + 1 = e + 1 \). Now substituting into the integral: \[ \int_{-1}^{1} \frac{e^x}{e^x + 1} dx = \int_{\frac{1}{e} + 1}^{e + 1} \frac{t - 1}{t} \cdot \frac{dt}{t - 1} = \int_{\frac{1}{e} + 1}^{e + 1} \frac{1}{t} dt - \int_{\frac{1}{e} + 1}^{e + 1} dt. \] ### Step 5: Evaluate the Logarithmic Integral The first part evaluates to: \[ \left[ \ln t \right]_{\frac{1}{e} + 1}^{e + 1} = \ln(e + 1) - \ln\left(\frac{1}{e} + 1\right). \] The second part evaluates to: \[ \left[ t \right]_{\frac{1}{e} + 1}^{e + 1} = (e + 1) - \left(\frac{1}{e} + 1\right) = e - \frac{1}{e}. \] ### Step 6: Combine the Results Putting it all together, we have: \[ I = 2 - \left( \ln(e + 1) - \ln\left(\frac{1}{e} + 1\right) + e - \frac{1}{e} \right). \] ### Final Answer Thus, the final result for the integral is: \[ I = 2 - \left( \ln(e + 1) - \ln\left(\frac{1}{e} + 1\right) + e - \frac{1}{e} \right). \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER -1

    ICSE|Exercise Secton - C|11 Videos
  • MODEL TEST PAPER 15

    ICSE|Exercise SECTIONS-C|11 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int _(-1) ^(1) e^(x) dx .

Evaluate : int_(-1)^(1)e^(x)dx

Evaluate : int _(1) ^(e) ( dx)/( x (1 + log x))

int_(-1)^(1)e^(2x)dx

Evaluate : int(1)/(e^(x)-1)dx

Evaluate int_(0)^(1)(e^(-x)dx)/(1+e^(x))

Evaluate int_-1^1 e^|x|dx

Evaluate: int_(-pi)^pi(xsinx dx)/(e^x+1)

Evaluate: int_(-pi)^pi(xsinx dx)/(e^x+1)

Evaluate: int(e^(x-1)+x^(e-1))/(e^x+x^e)dx