Home
Class 12
MATHS
Using properties of determinant, prove t...

Using properties of determinant, prove that
` |{:( 1,a,a^(2)),(a^(2) , 1,a),( a,a^(2),1):}|=(a^(3) -1)^(2)`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER -1

    ICSE|Exercise Secton - C|11 Videos
  • MODEL TEST PAPER 15

    ICSE|Exercise SECTIONS-C|11 Videos

Similar Questions

Explore conceptually related problems

Using properties of determinants, prove that : |{:(a^(2)+1,ab,ac),(ba,b^(2)+1,bc),(ca,cb,c^(2)+1):}|=a^(2)+b^(2)+c^(2)+1

Using properties of determinant, prove that |{:(a^(2)+2a, 2a+1, 1), (2a+1, a+2, 1), (3, 3, 1):}|=(a-1)^(3)

Prove: |(1,a, a^2),(a^2, 1,a),( a, a^2, 1)|=(a^3-1)^2

Using properties of determinants, prove the following: |[1,a,a^2],[a^2,1,a],[a,a^2,1]|=(1-a^3)^2

Using properties of determinant prove that |(a^(2)+1, ab, ac),(ab, b^(2)+1, bc),(ca, cb,c^(2)+1)|=(1+a^(2)+b^(2)+c^(2)) .

Using properties of determinants, prove that 3 2 (a 1) 3 3 1 2a 1 a 2 1 a 2a 2a

Using properties of determinants, prove that |(a^2+2a, 2a+1,1), (2a+1, a+2, 1), (3,3,1)| = (a-1)^3

Using properties of determinants, prove that |(a^2+2a, 2a+1,1), (2a+1, a+2, 1), (3,3,1)| = (a-1)^3

Using properties of determinants, prove that: |(1+a^(2)-b^(2),2ab,-2b),(2ab,1-a^(2)+b^(2),2a),(2b,-2a,1-a^(2)-b^(2))|=(1+a^(2)+b^(2))^(3)

Using properties of determinants, prove the following: |[1,x,x^2],[x^2, 1,x],[x,x^2,1]|=(1-x^3)^2