Home
Class 12
MATHS
Using matrix method, solve the system of...

Using matrix method, solve the system of equations:
` {:( x+2y+z=1 ),( x-y -z=2 ),( 2x+3y+z=1):}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the system of equations using the matrix method, we will follow these steps: Given equations: 1. \( x + 2y + z = 1 \) (Equation 1) 2. \( x - y - z = 2 \) (Equation 2) 3. \( 2x + 3y + z = 1 \) (Equation 3) ### Step 1: Write the system in matrix form We can express the system of equations in the form \( AX = B \), where: - \( A \) is the coefficient matrix, - \( X \) is the variable matrix, - \( B \) is the constant matrix. The coefficient matrix \( A \) and the constant matrix \( B \) are given by: \[ A = \begin{pmatrix} 1 & 2 & 1 \\ 1 & -1 & -1 \\ 2 & 3 & 1 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \quad B = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \] ### Step 2: Find the determinant of matrix \( A \) To find the inverse of matrix \( A \), we first need to calculate its determinant \( |A| \): \[ |A| = 1 \cdot \begin{vmatrix} -1 & -1 \\ 3 & 1 \end{vmatrix} - 2 \cdot \begin{vmatrix} 1 & -1 \\ 2 & 1 \end{vmatrix} + 1 \cdot \begin{vmatrix} 1 & -1 \\ 2 & 3 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} -1 & -1 \\ 3 & 1 \end{vmatrix} = (-1)(1) - (-1)(3) = -1 + 3 = 2 \) 2. \( \begin{vmatrix} 1 & -1 \\ 2 & 1 \end{vmatrix} = (1)(1) - (-1)(2) = 1 + 2 = 3 \) 3. \( \begin{vmatrix} 1 & -1 \\ 2 & 3 \end{vmatrix} = (1)(3) - (-1)(2) = 3 + 2 = 5 \) Now substituting back: \[ |A| = 1 \cdot 2 - 2 \cdot 3 + 1 \cdot 5 = 2 - 6 + 5 = 1 \] ### Step 3: Find the adjoint of matrix \( A \) Next, we need to find the adjoint of \( A \) by calculating the cofactors and then transposing the cofactor matrix. The cofactor matrix \( C \) is calculated as follows: \[ C_{11} = 2, \quad C_{12} = -3, \quad C_{13} = 5 \\ C_{21} = -3, \quad C_{22} = 1, \quad C_{23} = 1 \\ C_{31} = -1, \quad C_{32} = 2, \quad C_{33} = -3 \] Thus, the cofactor matrix is: \[ C = \begin{pmatrix} 2 & -3 & 5 \\ -3 & 1 & 1 \\ -1 & 2 & -3 \end{pmatrix} \] Now, taking the transpose of the cofactor matrix gives us the adjoint \( \text{adj}(A) \): \[ \text{adj}(A) = \begin{pmatrix} 2 & -3 & -1 \\ -3 & 1 & 2 \\ 5 & 1 & -3 \end{pmatrix} \] ### Step 4: Find the inverse of matrix \( A \) The inverse of matrix \( A \) is given by: \[ A^{-1} = \frac{1}{|A|} \cdot \text{adj}(A) = \text{adj}(A) \quad \text{(since } |A| = 1\text{)} \] Thus, \[ A^{-1} = \begin{pmatrix} 2 & -3 & -1 \\ -3 & 1 & 2 \\ 5 & 1 & -3 \end{pmatrix} \] ### Step 5: Multiply \( A^{-1} \) by \( B \) to find \( X \) Now we compute \( X = A^{-1}B \): \[ X = \begin{pmatrix} 2 & -3 & -1 \\ -3 & 1 & 2 \\ 5 & 1 & -3 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \] Calculating the product: 1. First row: \( 2 \cdot 1 + (-3) \cdot 2 + (-1) \cdot 1 = 2 - 6 - 1 = -5 \) 2. Second row: \( -3 \cdot 1 + 1 \cdot 2 + 2 \cdot 1 = -3 + 2 + 2 = 1 \) 3. Third row: \( 5 \cdot 1 + 1 \cdot 2 + (-3) \cdot 1 = 5 + 2 - 3 = 4 \) Thus, we have: \[ X = \begin{pmatrix} -5 \\ 1 \\ 4 \end{pmatrix} \] ### Final Solution The values of \( x, y, z \) are: \[ x = -5, \quad y = 1, \quad z = 4 \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER -1

    ICSE|Exercise Secton - C|11 Videos
  • MODEL TEST PAPER 15

    ICSE|Exercise SECTIONS-C|11 Videos

Similar Questions

Explore conceptually related problems

Using matrix method, solve the system of equation 3x+2y-2z=3, x+2y+3z=6 and 2x-y+z=2

Using the matrix method, solve the following system of equations. x-2y+3z=6, x+4y+z=12,x-3y+2z=1

Using matrix method, solve the following system of equation x-2y=10,2x+y+3z=8 and -2y+z=7

Using matrices, solve the following system of equations: 2x-y+z= -3 , 3x-z= -8 , x+3y=1

Using matrices, solve the following system of equations: 2x-3y+5z=11 , 3x+2y-4z=-5 , x+y-2z=-3

Using matrices, solve the following system of equations: x+y+z=6 ; x+2z=7 ; 3x+y+z=12

Using matrices, solve the following system of equations: 2x+3y+3z=5; x - 2y+z=- 4; 3x- y-2z=3

Solve the system of equations 2x+3y-3z=0 , 3x-3y+z=0 and 3x-2y-3z=0

Using matrix method, solve the following system of linear equations. 3x+4y+2z=8, 2y-3z=3 and x-2y+6z=-2

Using matrices, solve the following system of equations: x\ -\ y+z=4;\ 2x+y\ -\ 3z=0;\ x+y+z=2