Using matrix method, solve the system of equations:
` {:( x+2y+z=1 ),( x-y -z=2 ),( 2x+3y+z=1):}`
Using matrix method, solve the system of equations:
` {:( x+2y+z=1 ),( x-y -z=2 ),( 2x+3y+z=1):}`
` {:( x+2y+z=1 ),( x-y -z=2 ),( 2x+3y+z=1):}`
Text Solution
AI Generated Solution
The correct Answer is:
To solve the system of equations using the matrix method, we will follow these steps:
Given equations:
1. \( x + 2y + z = 1 \) (Equation 1)
2. \( x - y - z = 2 \) (Equation 2)
3. \( 2x + 3y + z = 1 \) (Equation 3)
### Step 1: Write the system in matrix form
We can express the system of equations in the form \( AX = B \), where:
- \( A \) is the coefficient matrix,
- \( X \) is the variable matrix,
- \( B \) is the constant matrix.
The coefficient matrix \( A \) and the constant matrix \( B \) are given by:
\[
A = \begin{pmatrix}
1 & 2 & 1 \\
1 & -1 & -1 \\
2 & 3 & 1
\end{pmatrix}, \quad
X = \begin{pmatrix}
x \\
y \\
z
\end{pmatrix}, \quad
B = \begin{pmatrix}
1 \\
2 \\
1
\end{pmatrix}
\]
### Step 2: Find the determinant of matrix \( A \)
To find the inverse of matrix \( A \), we first need to calculate its determinant \( |A| \):
\[
|A| = 1 \cdot \begin{vmatrix}
-1 & -1 \\
3 & 1
\end{vmatrix} - 2 \cdot \begin{vmatrix}
1 & -1 \\
2 & 1
\end{vmatrix} + 1 \cdot \begin{vmatrix}
1 & -1 \\
2 & 3
\end{vmatrix}
\]
Calculating the 2x2 determinants:
1. \( \begin{vmatrix}
-1 & -1 \\
3 & 1
\end{vmatrix} = (-1)(1) - (-1)(3) = -1 + 3 = 2 \)
2. \( \begin{vmatrix}
1 & -1 \\
2 & 1
\end{vmatrix} = (1)(1) - (-1)(2) = 1 + 2 = 3 \)
3. \( \begin{vmatrix}
1 & -1 \\
2 & 3
\end{vmatrix} = (1)(3) - (-1)(2) = 3 + 2 = 5 \)
Now substituting back:
\[
|A| = 1 \cdot 2 - 2 \cdot 3 + 1 \cdot 5 = 2 - 6 + 5 = 1
\]
### Step 3: Find the adjoint of matrix \( A \)
Next, we need to find the adjoint of \( A \) by calculating the cofactors and then transposing the cofactor matrix.
The cofactor matrix \( C \) is calculated as follows:
\[
C_{11} = 2, \quad C_{12} = -3, \quad C_{13} = 5 \\
C_{21} = -3, \quad C_{22} = 1, \quad C_{23} = 1 \\
C_{31} = -1, \quad C_{32} = 2, \quad C_{33} = -3
\]
Thus, the cofactor matrix is:
\[
C = \begin{pmatrix}
2 & -3 & 5 \\
-3 & 1 & 1 \\
-1 & 2 & -3
\end{pmatrix}
\]
Now, taking the transpose of the cofactor matrix gives us the adjoint \( \text{adj}(A) \):
\[
\text{adj}(A) = \begin{pmatrix}
2 & -3 & -1 \\
-3 & 1 & 2 \\
5 & 1 & -3
\end{pmatrix}
\]
### Step 4: Find the inverse of matrix \( A \)
The inverse of matrix \( A \) is given by:
\[
A^{-1} = \frac{1}{|A|} \cdot \text{adj}(A) = \text{adj}(A) \quad \text{(since } |A| = 1\text{)}
\]
Thus,
\[
A^{-1} = \begin{pmatrix}
2 & -3 & -1 \\
-3 & 1 & 2 \\
5 & 1 & -3
\end{pmatrix}
\]
### Step 5: Multiply \( A^{-1} \) by \( B \) to find \( X \)
Now we compute \( X = A^{-1}B \):
\[
X = \begin{pmatrix}
2 & -3 & -1 \\
-3 & 1 & 2 \\
5 & 1 & -3
\end{pmatrix} \begin{pmatrix}
1 \\
2 \\
1
\end{pmatrix}
\]
Calculating the product:
1. First row: \( 2 \cdot 1 + (-3) \cdot 2 + (-1) \cdot 1 = 2 - 6 - 1 = -5 \)
2. Second row: \( -3 \cdot 1 + 1 \cdot 2 + 2 \cdot 1 = -3 + 2 + 2 = 1 \)
3. Third row: \( 5 \cdot 1 + 1 \cdot 2 + (-3) \cdot 1 = 5 + 2 - 3 = 4 \)
Thus, we have:
\[
X = \begin{pmatrix}
-5 \\
1 \\
4
\end{pmatrix}
\]
### Final Solution
The values of \( x, y, z \) are:
\[
x = -5, \quad y = 1, \quad z = 4
\]
Topper's Solved these Questions
Similar Questions
Explore conceptually related problems
Using matrix method, solve the system of equation 3x+2y-2z=3, x+2y+3z=6 and 2x-y+z=2
Using the matrix method, solve the following system of equations. x-2y+3z=6, x+4y+z=12,x-3y+2z=1
Using matrix method, solve the following system of equation x-2y=10,2x+y+3z=8 and -2y+z=7
Using matrices, solve the following system of equations: 2x-y+z= -3 , 3x-z= -8 , x+3y=1
Using matrices, solve the following system of equations: 2x-3y+5z=11 , 3x+2y-4z=-5 , x+y-2z=-3
Using matrices, solve the following system of equations: x+y+z=6 ; x+2z=7 ; 3x+y+z=12
Using matrices, solve the following system of equations: 2x+3y+3z=5; x - 2y+z=- 4; 3x- y-2z=3
Solve the system of equations 2x+3y-3z=0 , 3x-3y+z=0 and 3x-2y-3z=0
Using matrix method, solve the following system of linear equations. 3x+4y+2z=8, 2y-3z=3 and x-2y+6z=-2
Using matrices, solve the following system of equations: x\ -\ y+z=4;\ 2x+y\ -\ 3z=0;\ x+y+z=2