Home
Class 11
MATHS
Computer sin 75^(@) , cos 75^(@) and tan...

Computer `sin 75^(@) , cos 75^(@) and tan 15 ^(@),` from the functions of `30^(@) and 45 ^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To compute \( \sin 75^\circ \), \( \cos 75^\circ \), and \( \tan 15^\circ \) using the values of \( 30^\circ \) and \( 45^\circ \), we can use the sine and cosine addition formulas. Here’s the step-by-step solution: ### Step 1: Calculate \( \sin 75^\circ \) We can express \( 75^\circ \) as \( 45^\circ + 30^\circ \). Using the sine addition formula: \[ \sin(x + y) = \sin x \cos y + \cos x \sin y \] Let \( x = 45^\circ \) and \( y = 30^\circ \): \[ \sin 75^\circ = \sin(45^\circ + 30^\circ) = \sin 45^\circ \cos 30^\circ + \cos 45^\circ \sin 30^\circ \] Now, substituting the known values: - \( \sin 45^\circ = \frac{1}{\sqrt{2}} \) - \( \cos 30^\circ = \frac{\sqrt{3}}{2} \) - \( \cos 45^\circ = \frac{1}{\sqrt{2}} \) - \( \sin 30^\circ = \frac{1}{2} \) So, \[ \sin 75^\circ = \left(\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2}\right) + \left(\frac{1}{\sqrt{2}} \cdot \frac{1}{2}\right) \] \[ = \frac{\sqrt{3}}{2\sqrt{2}} + \frac{1}{2\sqrt{2}} = \frac{\sqrt{3} + 1}{2\sqrt{2}} \] ### Step 2: Calculate \( \cos 75^\circ \) Using the cosine addition formula: \[ \cos(x + y) = \cos x \cos y - \sin x \sin y \] Let \( x = 45^\circ \) and \( y = 30^\circ \): \[ \cos 75^\circ = \cos(45^\circ + 30^\circ) = \cos 45^\circ \cos 30^\circ - \sin 45^\circ \sin 30^\circ \] Substituting the known values: \[ \cos 75^\circ = \left(\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2}\right) - \left(\frac{1}{\sqrt{2}} \cdot \frac{1}{2}\right) \] \[ = \frac{\sqrt{3}}{2\sqrt{2}} - \frac{1}{2\sqrt{2}} = \frac{\sqrt{3} - 1}{2\sqrt{2}} \] ### Step 3: Calculate \( \tan 15^\circ \) We can express \( 15^\circ \) as \( 45^\circ - 30^\circ \). Using the tangent subtraction formula: \[ \tan(x - y) = \frac{\tan x - \tan y}{1 + \tan x \tan y} \] Let \( x = 45^\circ \) and \( y = 30^\circ \): \[ \tan 15^\circ = \tan(45^\circ - 30^\circ) = \frac{\tan 45^\circ - \tan 30^\circ}{1 + \tan 45^\circ \tan 30^\circ} \] Substituting the known values: - \( \tan 45^\circ = 1 \) - \( \tan 30^\circ = \frac{1}{\sqrt{3}} \) So, \[ \tan 15^\circ = \frac{1 - \frac{1}{\sqrt{3}}}{1 + 1 \cdot \frac{1}{\sqrt{3}}} \] \[ = \frac{1 - \frac{1}{\sqrt{3}}}{1 + \frac{1}{\sqrt{3}}} \] Multiplying the numerator and denominator by \( \sqrt{3} \): \[ = \frac{\sqrt{3} - 1}{\sqrt{3} + 1} \] ### Final Answers: - \( \sin 75^\circ = \frac{\sqrt{3} + 1}{2\sqrt{2}} \) - \( \cos 75^\circ = \frac{\sqrt{3} - 1}{2\sqrt{2}} \) - \( \tan 15^\circ = \frac{\sqrt{3} - 1}{\sqrt{3} + 1} \)
Promotional Banner

Topper's Solved these Questions

  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5(A)|49 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5 (B) |35 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Chapter Test|25 Videos
  • CONIC SECTIONS

    ICSE|Exercise Multiple Choice Questions |33 Videos

Similar Questions

Explore conceptually related problems

Compute sin 15 ^(@) from the functions 60^(@) and 45 ^(@)

Compute cos 345 ^(@) from the functions of 300^(@) and 45 ^(@)

Compute sin 13 5 ^(@) from the functions of 180^(@) and 45 ^(@)

Compute tan 105^(@) from the functions of 45 ^(@) and 60^(@)

Compute cos 195^(@) from the functions of 15 0^(@) and 45 ^(@),

Value of tan 75^(@) + cot 75^(@) = ?

Evaluate: sin 15^(@)cos 15^(@)-cos 75^(@)sin75^(@)

The value of 2 sin 15^(@).cos75^(@)

Evaluate : 14 sin 30^(@)+6cos 60^(@)-5tan 45^(@)

Evaluate : 14 sin 30^(@)+6cos 60^(@)-5tan 45^(@)

ICSE-COMPOUND AND MULTIPLE ANGLES -CHEPTER TEST
  1. Computer sin 75^(@) , cos 75^(@) and tan 15 ^(@), from the functions o...

    Text Solution

    |

  2. Show that tan 75^(@) = (sqrt3) +(1 )/( sqrt3 -1) = 2 + sqrt3. Hence de...

    Text Solution

    |

  3. Prove that sin (n+1) x sin (n +2) x + cos (n +1) x cos (n +2) x = cos ...

    Text Solution

    |

  4. if A+ B + C = pi, and cos A = cos B cos C, show that 2 cot B cot C=1.

    Text Solution

    |

  5. Show that (sin (alpha + beta))/( sin (alpha + beta)) = 2, given that ...

    Text Solution

    |

  6. Show that ( cos 10^(@) + sin 10 ^(@))/( cos 10^(@) - sin 10 ^(@)) = ta...

    Text Solution

    |

  7. If sin 2 A = 4/5, find the value of tan A, (0^(@) le A le (pi)/(3))

    Text Solution

    |

  8. Express cot A in terms of cos 2 A

    Text Solution

    |

  9. Write cos 4 theta in terms of cos theta.

    Text Solution

    |

  10. A positive acute angle is divided into two parts whose tangents are 1/...

    Text Solution

    |

  11. Show that cos 10^(@) + cos 110^(@) + cos 130^(@) = 0

    Text Solution

    |

  12. Show that (sin 5 A + 2 sin 8A + sin 11 A)/( sin 8A + 2 sin 11 A + sin ...

    Text Solution

    |

  13. Show that (1)/(2 sin 10^(@)) - 2 sin 70^(@) =1.

    Text Solution

    |

  14. Show that sin 19^(@) + sin 41^(@) + sin 83^(@) = sin 23 ^(@) + sin 37^...

    Text Solution

    |

  15. If sin A = (1)/(sqrt3) and sin B = (1)/(sqrt5) find the value of tan...

    Text Solution

    |

  16. If sin theta = n sin ( theta + 2 alpha ) , show that ( n -1) tan (the...

    Text Solution

    |

  17. If tan "" (alpha )/(2) and tan "" (beta)/( 2) are the roots of the eq...

    Text Solution

    |

  18. Prove that ((cos A + cos B)/( sin A - sin B )) ^(n) + ((sin A + sin B ...

    Text Solution

    |

  19. Find sin ""(x)/(2), cos "" (x)/(2) and tan "" (x)/(2) in each of the c...

    Text Solution

    |

  20. Find sin ""(x)/(2), cos "" (x)/(2) and tan "" (x)/(2) in each of the c...

    Text Solution

    |

  21. Prove that cos 6x = 32 cos ^(6) x - 48 cos ^(4) x + 18 cos ^(2) x -1.

    Text Solution

    |