Home
Class 11
MATHS
Prove that sin ( alpha + 30^(@)) = cos a...

Prove that `sin ( alpha + 30^(@)) = cos alpha + sin (alpha - 30^(@))`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \( \sin(\alpha + 30^\circ) = \cos \alpha + \sin(\alpha - 30^\circ) \), we will start with the right-hand side (RHS) and manipulate it to show that it equals the left-hand side (LHS). ### Step 1: Write down the RHS We start with the right-hand side: \[ \text{RHS} = \cos \alpha + \sin(\alpha - 30^\circ) \] ### Step 2: Use the sine subtraction formula The sine subtraction formula states that: \[ \sin(a - b) = \sin a \cos b - \cos a \sin b \] Applying this to \( \sin(\alpha - 30^\circ) \): \[ \sin(\alpha - 30^\circ) = \sin \alpha \cos 30^\circ - \cos \alpha \sin 30^\circ \] ### Step 3: Substitute known values of sine and cosine We know that: \[ \cos 30^\circ = \frac{\sqrt{3}}{2} \quad \text{and} \quad \sin 30^\circ = \frac{1}{2} \] Substituting these values into the equation: \[ \sin(\alpha - 30^\circ) = \sin \alpha \cdot \frac{\sqrt{3}}{2} - \cos \alpha \cdot \frac{1}{2} \] ### Step 4: Substitute back into the RHS Now, substituting this back into the RHS: \[ \text{RHS} = \cos \alpha + \left( \sin \alpha \cdot \frac{\sqrt{3}}{2} - \cos \alpha \cdot \frac{1}{2} \right) \] This simplifies to: \[ \text{RHS} = \cos \alpha + \frac{\sqrt{3}}{2} \sin \alpha - \frac{1}{2} \cos \alpha \] ### Step 5: Combine like terms Combining the terms involving \( \cos \alpha \): \[ \text{RHS} = \left(1 - \frac{1}{2}\right) \cos \alpha + \frac{\sqrt{3}}{2} \sin \alpha \] This simplifies to: \[ \text{RHS} = \frac{1}{2} \cos \alpha + \frac{\sqrt{3}}{2} \sin \alpha \] ### Step 6: Now, find the LHS Now, we compute the left-hand side: \[ \text{LHS} = \sin(\alpha + 30^\circ) \] Using the sine addition formula: \[ \sin(a + b) = \sin a \cos b + \cos a \sin b \] Applying this to \( \sin(\alpha + 30^\circ) \): \[ \sin(\alpha + 30^\circ) = \sin \alpha \cos 30^\circ + \cos \alpha \sin 30^\circ \] Substituting the known values: \[ \sin(\alpha + 30^\circ) = \sin \alpha \cdot \frac{\sqrt{3}}{2} + \cos \alpha \cdot \frac{1}{2} \] ### Step 7: Combine the terms This simplifies to: \[ \sin(\alpha + 30^\circ) = \frac{\sqrt{3}}{2} \sin \alpha + \frac{1}{2} \cos \alpha \] ### Step 8: Compare LHS and RHS Now we compare: \[ \text{LHS} = \frac{\sqrt{3}}{2} \sin \alpha + \frac{1}{2} \cos \alpha \] \[ \text{RHS} = \frac{1}{2} \cos \alpha + \frac{\sqrt{3}}{2} \sin \alpha \] Both sides are equal, thus proving: \[ \sin(\alpha + 30^\circ) = \cos \alpha + \sin(\alpha - 30^\circ) \] ### Conclusion Hence, we have proven that: \[ \sin(\alpha + 30^\circ) = \cos \alpha + \sin(\alpha - 30^\circ) \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5(A)|49 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5 (B) |35 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Chapter Test|25 Videos
  • CONIC SECTIONS

    ICSE|Exercise Multiple Choice Questions |33 Videos

Similar Questions

Explore conceptually related problems

Prove that (sin alpha cos beta + cos alpha sin beta) ^(2) + (cos alpha coa beta - sin alpha sin beta) ^(2) =1.

Prove that 2 sin^2 beta + 4 cos(alpha + beta) sin alpha sin beta + cos 2(alpha + beta) = cos 2alpha

Prove that : (cos alpha + cos beta)^2 + (sin alpha + sin beta)^2 = 4 cos^2 ((alpha-beta)/(2))

Prove that sinalpha*sin(60-alpha)sin(60+alpha) = 1/4*sin3alpha

Prove that the distance of the point (a cos alpha, a sin alpha) from the origin is independent of alpha

If sin 3 alpha =4 sin alpha sin (x+alpha ) sin(x-alpha ) , then

Evaluate : |{:( 0, sin alpha , - cos alpha ), ( - sin alpha , 0 , sin beta) , (cos alpha , -sin beta , 0):}|

(cos ^(3) alpha - cos 3 alpha )/( cos alpha ) + (sin ^(3)alpha + sin 3 alpha )/( sin alpha ) = 3.

Prove that : 2 sin^2 theta + 4 cos (theta + alpha) sin alpha sin theta + cos 2 (alpha + theta) is independent of theta.

Prove that |(sin alpha,cos alpha,sin(alpha+delta)),(sin beta,cos beta,sin(beta+delta)),(sin gamma,cos gamma,sin(gamma+delta))|=0

ICSE-COMPOUND AND MULTIPLE ANGLES -CHEPTER TEST
  1. Prove that sin ( alpha + 30^(@)) = cos alpha + sin (alpha - 30^(@))

    Text Solution

    |

  2. Show that tan 75^(@) = (sqrt3) +(1 )/( sqrt3 -1) = 2 + sqrt3. Hence de...

    Text Solution

    |

  3. Prove that sin (n+1) x sin (n +2) x + cos (n +1) x cos (n +2) x = cos ...

    Text Solution

    |

  4. if A+ B + C = pi, and cos A = cos B cos C, show that 2 cot B cot C=1.

    Text Solution

    |

  5. Show that (sin (alpha + beta))/( sin (alpha + beta)) = 2, given that ...

    Text Solution

    |

  6. Show that ( cos 10^(@) + sin 10 ^(@))/( cos 10^(@) - sin 10 ^(@)) = ta...

    Text Solution

    |

  7. If sin 2 A = 4/5, find the value of tan A, (0^(@) le A le (pi)/(3))

    Text Solution

    |

  8. Express cot A in terms of cos 2 A

    Text Solution

    |

  9. Write cos 4 theta in terms of cos theta.

    Text Solution

    |

  10. A positive acute angle is divided into two parts whose tangents are 1/...

    Text Solution

    |

  11. Show that cos 10^(@) + cos 110^(@) + cos 130^(@) = 0

    Text Solution

    |

  12. Show that (sin 5 A + 2 sin 8A + sin 11 A)/( sin 8A + 2 sin 11 A + sin ...

    Text Solution

    |

  13. Show that (1)/(2 sin 10^(@)) - 2 sin 70^(@) =1.

    Text Solution

    |

  14. Show that sin 19^(@) + sin 41^(@) + sin 83^(@) = sin 23 ^(@) + sin 37^...

    Text Solution

    |

  15. If sin A = (1)/(sqrt3) and sin B = (1)/(sqrt5) find the value of tan...

    Text Solution

    |

  16. If sin theta = n sin ( theta + 2 alpha ) , show that ( n -1) tan (the...

    Text Solution

    |

  17. If tan "" (alpha )/(2) and tan "" (beta)/( 2) are the roots of the eq...

    Text Solution

    |

  18. Prove that ((cos A + cos B)/( sin A - sin B )) ^(n) + ((sin A + sin B ...

    Text Solution

    |

  19. Find sin ""(x)/(2), cos "" (x)/(2) and tan "" (x)/(2) in each of the c...

    Text Solution

    |

  20. Find sin ""(x)/(2), cos "" (x)/(2) and tan "" (x)/(2) in each of the c...

    Text Solution

    |

  21. Prove that cos 6x = 32 cos ^(6) x - 48 cos ^(4) x + 18 cos ^(2) x -1.

    Text Solution

    |