Home
Class 11
MATHS
If sin (alpha + beta) = 4/5 , cos (alpha...

If `sin (alpha + beta) = 4/5 , cos (alpha - beta) = (12)/(13) 0 lt alpha lt (pi)/(4), 0 lt beta lt (pi)/(4),` find `tan 2 alpha .`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will use the given values and trigonometric identities. ### Step 1: Find \( \cos(\alpha + \beta) \) We know that: \[ \sin(\alpha + \beta) = \frac{4}{5} \] Using the identity \( \cos^2(\theta) = 1 - \sin^2(\theta) \), we can find \( \cos(\alpha + \beta) \): \[ \cos(\alpha + \beta) = \sqrt{1 - \sin^2(\alpha + \beta)} = \sqrt{1 - \left(\frac{4}{5}\right)^2} \] Calculating this gives: \[ \cos(\alpha + \beta) = \sqrt{1 - \frac{16}{25}} = \sqrt{\frac{9}{25}} = \frac{3}{5} \] ### Step 2: Find \( \sin(\alpha - \beta) \) We are given: \[ \cos(\alpha - \beta) = \frac{12}{13} \] Using the identity \( \sin^2(\theta) = 1 - \cos^2(\theta) \), we can find \( \sin(\alpha - \beta) \): \[ \sin(\alpha - \beta) = \sqrt{1 - \cos^2(\alpha - \beta)} = \sqrt{1 - \left(\frac{12}{13}\right)^2} \] Calculating this gives: \[ \sin(\alpha - \beta) = \sqrt{1 - \frac{144}{169}} = \sqrt{\frac{25}{169}} = \frac{5}{13} \] ### Step 3: Find \( \tan(\alpha + \beta) \) and \( \tan(\alpha - \beta) \) Using the definitions of tangent: \[ \tan(\alpha + \beta) = \frac{\sin(\alpha + \beta)}{\cos(\alpha + \beta)} = \frac{\frac{4}{5}}{\frac{3}{5}} = \frac{4}{3} \] \[ \tan(\alpha - \beta) = \frac{\sin(\alpha - \beta)}{\cos(\alpha - \beta)} = \frac{\frac{5}{13}}{\frac{12}{13}} = \frac{5}{12} \] ### Step 4: Find \( \tan(2\alpha) \) Using the formula for \( \tan(2\theta) \): \[ \tan(2\alpha) = \frac{\tan(\alpha + \beta) + \tan(\alpha - \beta)}{1 - \tan(\alpha + \beta) \tan(\alpha - \beta)} \] Substituting the values we found: \[ \tan(2\alpha) = \frac{\frac{4}{3} + \frac{5}{12}}{1 - \left(\frac{4}{3} \cdot \frac{5}{12}\right)} \] ### Step 5: Simplifying the numerator Finding a common denominator for the numerator: \[ \frac{4}{3} = \frac{16}{12} \] Thus, \[ \tan(2\alpha) = \frac{\frac{16}{12} + \frac{5}{12}}{1 - \frac{20}{36}} = \frac{\frac{21}{12}}{1 - \frac{5}{9}} \] ### Step 6: Simplifying the denominator Calculating the denominator: \[ 1 - \frac{5}{9} = \frac{4}{9} \] So now we have: \[ \tan(2\alpha) = \frac{\frac{21}{12}}{\frac{4}{9}} = \frac{21}{12} \cdot \frac{9}{4} = \frac{189}{48} = \frac{63}{16} \] ### Final Answer Thus, the value of \( \tan(2\alpha) \) is: \[ \boxed{\frac{63}{16}} \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5(A)|49 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5 (B) |35 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Chapter Test|25 Videos
  • CONIC SECTIONS

    ICSE|Exercise Multiple Choice Questions |33 Videos

Similar Questions

Explore conceptually related problems

If cos (alpha + beta) = (4)/(5), sin (alpha - beta) = (5)/(13) and alpha and beta lie between 0 and (pi)/(4) , find tan 2 alpha .

If sin (alpha + beta) = 4/5 , sin (alpha -beta) = (5)/(13), alpha + beta , alpha - beta being acute angles prove that tan 2 alpha = (63)/(16).

If 0 lt alpha lt beta lt (pi)/(2) then

If cos(alpha+beta)=(4)/(5) and sin(alpha-beta)=(5)/(13) , where alpha lie between 0 and (pi)/(4) , then find that value of tan2alpha .

Find the value of sin (alpha + beta) , cos (alpha + beta) , and tan (alpha + beta), given cos alpha = ( -12)/(13), cot beta = (24)/( 7), alpha in Quadrant II, beta in Quadrant III.

Find the value of sin (alpha + beta) , cos (alpha + beta) , and tan (alpha + beta), given sin alpha = (3)/(5) , cos beta = (5)/(13), alpha and beta in Quadrant I.

Find the value of sin (alpha - beta), cos (alpha -beta) and tan (alpha - beta), given cos alpha = (-12)/(13) , cot beta = (24)/(7), alpha in Quadrant II, beta in Quadrant I.

Find the value of sin (alpha - beta), cos (alpha -beta) and tan (alpha - beta), given sin alpha = (8)/(17) , tan beta = (5)/(12), alpha and beta in Quadrant I.

Let cos (alpha+beta) = 4/5 and sin(alpha-beta)=5/13 where 0<= alpha,beta<= pi/4 then find tan (2alpha)

If sin alpha = 3/5, tan beta = 1/2 and pi/2 lt alpha lt pi lt beta lt (3pi)/2 , show that 8 tan alpha - sqrt(5) sec beta = - 7/2 .

ICSE-COMPOUND AND MULTIPLE ANGLES -CHEPTER TEST
  1. If sin (alpha + beta) = 4/5 , cos (alpha - beta) = (12)/(13) 0 lt alph...

    Text Solution

    |

  2. Show that tan 75^(@) = (sqrt3) +(1 )/( sqrt3 -1) = 2 + sqrt3. Hence de...

    Text Solution

    |

  3. Prove that sin (n+1) x sin (n +2) x + cos (n +1) x cos (n +2) x = cos ...

    Text Solution

    |

  4. if A+ B + C = pi, and cos A = cos B cos C, show that 2 cot B cot C=1.

    Text Solution

    |

  5. Show that (sin (alpha + beta))/( sin (alpha + beta)) = 2, given that ...

    Text Solution

    |

  6. Show that ( cos 10^(@) + sin 10 ^(@))/( cos 10^(@) - sin 10 ^(@)) = ta...

    Text Solution

    |

  7. If sin 2 A = 4/5, find the value of tan A, (0^(@) le A le (pi)/(3))

    Text Solution

    |

  8. Express cot A in terms of cos 2 A

    Text Solution

    |

  9. Write cos 4 theta in terms of cos theta.

    Text Solution

    |

  10. A positive acute angle is divided into two parts whose tangents are 1/...

    Text Solution

    |

  11. Show that cos 10^(@) + cos 110^(@) + cos 130^(@) = 0

    Text Solution

    |

  12. Show that (sin 5 A + 2 sin 8A + sin 11 A)/( sin 8A + 2 sin 11 A + sin ...

    Text Solution

    |

  13. Show that (1)/(2 sin 10^(@)) - 2 sin 70^(@) =1.

    Text Solution

    |

  14. Show that sin 19^(@) + sin 41^(@) + sin 83^(@) = sin 23 ^(@) + sin 37^...

    Text Solution

    |

  15. If sin A = (1)/(sqrt3) and sin B = (1)/(sqrt5) find the value of tan...

    Text Solution

    |

  16. If sin theta = n sin ( theta + 2 alpha ) , show that ( n -1) tan (the...

    Text Solution

    |

  17. If tan "" (alpha )/(2) and tan "" (beta)/( 2) are the roots of the eq...

    Text Solution

    |

  18. Prove that ((cos A + cos B)/( sin A - sin B )) ^(n) + ((sin A + sin B ...

    Text Solution

    |

  19. Find sin ""(x)/(2), cos "" (x)/(2) and tan "" (x)/(2) in each of the c...

    Text Solution

    |

  20. Find sin ""(x)/(2), cos "" (x)/(2) and tan "" (x)/(2) in each of the c...

    Text Solution

    |

  21. Prove that cos 6x = 32 cos ^(6) x - 48 cos ^(4) x + 18 cos ^(2) x -1.

    Text Solution

    |