Home
Class 11
MATHS
Find the value of sin 75^(@) sin 15 ^(@)...

Find the value of `sin 75^(@) sin 15 ^(@).`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \sin 75^\circ \sin 15^\circ \), we can follow these steps: ### Step 1: Calculate \( \sin 75^\circ \) We can express \( 75^\circ \) as \( 45^\circ + 30^\circ \). Using the sine addition formula: \[ \sin(a + b) = \sin a \cos b + \cos a \sin b \] we have: \[ \sin 75^\circ = \sin(45^\circ + 30^\circ) = \sin 45^\circ \cos 30^\circ + \cos 45^\circ \sin 30^\circ \] ### Step 2: Substitute known values Using known values: - \( \sin 45^\circ = \frac{1}{\sqrt{2}} \) - \( \cos 30^\circ = \frac{\sqrt{3}}{2} \) - \( \cos 45^\circ = \frac{1}{\sqrt{2}} \) - \( \sin 30^\circ = \frac{1}{2} \) Substituting these values, we get: \[ \sin 75^\circ = \left(\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2}\right) + \left(\frac{1}{\sqrt{2}} \cdot \frac{1}{2}\right) \] \[ = \frac{\sqrt{3}}{2\sqrt{2}} + \frac{1}{2\sqrt{2}} = \frac{\sqrt{3} + 1}{2\sqrt{2}} \] ### Step 3: Calculate \( \sin 15^\circ \) We can express \( 15^\circ \) as \( 45^\circ - 30^\circ \). Using the sine subtraction formula: \[ \sin(a - b) = \sin a \cos b - \cos a \sin b \] we have: \[ \sin 15^\circ = \sin(45^\circ - 30^\circ) = \sin 45^\circ \cos 30^\circ - \cos 45^\circ \sin 30^\circ \] ### Step 4: Substitute known values Substituting the same known values: \[ \sin 15^\circ = \left(\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2}\right) - \left(\frac{1}{\sqrt{2}} \cdot \frac{1}{2}\right) \] \[ = \frac{\sqrt{3}}{2\sqrt{2}} - \frac{1}{2\sqrt{2}} = \frac{\sqrt{3} - 1}{2\sqrt{2}} \] ### Step 5: Multiply \( \sin 75^\circ \) and \( \sin 15^\circ \) Now, we multiply the two results: \[ \sin 75^\circ \sin 15^\circ = \left(\frac{\sqrt{3} + 1}{2\sqrt{2}}\right) \left(\frac{\sqrt{3} - 1}{2\sqrt{2}}\right) \] \[ = \frac{(\sqrt{3} + 1)(\sqrt{3} - 1)}{4 \cdot 2} \] Using the difference of squares: \[ = \frac{(\sqrt{3})^2 - (1)^2}{8} = \frac{3 - 1}{8} = \frac{2}{8} = \frac{1}{4} \] ### Final Answer Thus, the value of \( \sin 75^\circ \sin 15^\circ \) is \( \frac{1}{4} \). ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5(A)|49 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5 (B) |35 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Chapter Test|25 Videos
  • CONIC SECTIONS

    ICSE|Exercise Multiple Choice Questions |33 Videos

Similar Questions

Explore conceptually related problems

Find the values of sin75^(@) .

Find the value of: sin75^(0)

Knowledge Check

  • The value of 2 sin 15^(@).cos75^(@)

    A
    `(2+sqrt(3))/2`
    B
    `1`
    C
    `(sqrt(3))/2`
    D
    `(2-sqrt(3))/2`
  • Similar Questions

    Explore conceptually related problems

    Find the value of: sin120^(@)

    Find the value of sin300^(@)

    . Find the value of sin 105^@

    Find the value of sin 15o .

    Find the value of sin^(-1)1 .

    Value of sin 15^@ is :

    Find the value of sin(105^circ)