Home
Class 11
MATHS
Prove that (cos 3A +2 cos 5 A + cos 7A...

Prove that
`(cos 3A +2 cos 5 A + cos 7A)/( cos A + 2 cos 3 A + cos 5A) = cos 2 A - sin 2 A tan 3 A.`

Text Solution

AI Generated Solution

The correct Answer is:
To prove the given expression \[ \frac{\cos 3A + 2 \cos 5A + \cos 7A}{\cos A + 2 \cos 3A + \cos 5A} = \cos 2A - \sin^2 A \tan 3A, \] we will start with the left-hand side (LHS) and simplify it step by step. ### Step 1: Write down the LHS We start with the expression: \[ \text{LHS} = \frac{\cos 3A + 2 \cos 5A + \cos 7A}{\cos A + 2 \cos 3A + \cos 5A}. \] ### Step 2: Rearrange the terms We can rearrange the terms in both the numerator and the denominator: \[ \text{LHS} = \frac{(\cos 7A + \cos 3A) + 2 \cos 5A}{(\cos 5A + \cos A) + 2 \cos 3A}. \] ### Step 3: Apply the cosine addition formula Using the cosine addition formula \( \cos C + \cos D = 2 \cos\left(\frac{C+D}{2}\right) \cos\left(\frac{C-D}{2}\right) \): #### Numerator: Let \( C = 7A \) and \( D = 3A \): \[ \cos 7A + \cos 3A = 2 \cos\left(\frac{7A + 3A}{2}\right) \cos\left(\frac{7A - 3A}{2}\right) = 2 \cos(5A) \cos(2A). \] So, the numerator becomes: \[ \text{Numerator} = 2 \cos(5A) \cos(2A) + 2 \cos(5A) = 2 \cos(5A)(\cos(2A) + 1). \] #### Denominator: Let \( C = 5A \) and \( D = A \): \[ \cos 5A + \cos A = 2 \cos\left(\frac{5A + A}{2}\right) \cos\left(\frac{5A - A}{2}\right) = 2 \cos(3A) \cos(2A). \] So, the denominator becomes: \[ \text{Denominator} = 2 \cos(3A) \cos(2A) + 2 \cos(3A) = 2 \cos(3A)(\cos(2A) + 1). \] ### Step 4: Simplify the expression Now, substituting back into the LHS: \[ \text{LHS} = \frac{2 \cos(5A)(\cos(2A) + 1)}{2 \cos(3A)(\cos(2A) + 1)}. \] We can cancel \( 2 \) and \( (\cos(2A) + 1) \) (assuming \( \cos(2A) + 1 \neq 0 \)): \[ \text{LHS} = \frac{\cos(5A)}{\cos(3A)}. \] ### Step 5: Express \( \cos(5A) \) in terms of \( \cos(3A) \) Using the cosine addition formula again, we can express \( \cos(5A) \): \[ \cos(5A) = \cos(3A + 2A) = \cos(3A)\cos(2A) - \sin(3A)\sin(2A). \] Thus, \[ \text{LHS} = \frac{\cos(3A) \cos(2A) - \sin(3A) \sin(2A)}{\cos(3A)}. \] ### Step 6: Simplify further This simplifies to: \[ \text{LHS} = \cos(2A) - \frac{\sin(3A) \sin(2A)}{\cos(3A)}. \] Using the identity \( \tan(3A) = \frac{\sin(3A)}{\cos(3A)} \), we can rewrite it as: \[ \text{LHS} = \cos(2A) - \sin(2A) \tan(3A). \] ### Conclusion Thus, we have shown that: \[ \text{LHS} = \cos(2A) - \sin^2 A \tan(3A), \] which is equal to the right-hand side (RHS) of the original equation. Therefore, we conclude that: \[ \frac{\cos 3A + 2 \cos 5A + \cos 7A}{\cos A + 2 \cos 3A + \cos 5A} = \cos 2A - \sin^2 A \tan 3A. \] Hence, the statement is proved.
Promotional Banner

Topper's Solved these Questions

  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5(A)|49 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5 (B) |35 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Chapter Test|25 Videos
  • CONIC SECTIONS

    ICSE|Exercise Multiple Choice Questions |33 Videos

Similar Questions

Explore conceptually related problems

Prove that cos 5A = 16 cos^5A - 20 Cos^3 A + 5 cos A

Prove that: \ cos A+cos3A+cos5A+cos7A=4cos A cos2A cos4A

( sin A + sin 3A + sin 5A + sin 7A)/(cos A + cos 3 A + cos 5 A + cos 7A) = tan 4A.

Prove that: (cos3A+2cos5A+cos7A)/(cos A+2cos3A+cos5A)=(cos5A)/(cos3A)

(cos A + sin A )/( cos A - sin A) - (cos A - sin A )/(cos A + sin A ) = 2 tan 2 A.

Prove that (sin 7A - sin 5A)/(cos 5 A + cos 7A ) = tan A.

Prove that cos ^(3) x sin ^(2) x = (1)/(16) (2cos x - cos 3x - cos 5x).

Prove that : cos^3 A cos 3A + sin^3 A sin 3A = cos^3 2A

Prove that (sin 5x - 2 sin 3 x + sin x )/( cos 5 x - cos x ) = tan x

Prove that : (cos^(3) A + sin^(3) A)/ (cos A + sin A) + (cos^(3) A - sin^(3) A)/(cos A - sin A) = 2

ICSE-COMPOUND AND MULTIPLE ANGLES -CHEPTER TEST
  1. Prove that (cos 3A +2 cos 5 A + cos 7A)/( cos A + 2 cos 3 A + cos 5A...

    Text Solution

    |

  2. Show that tan 75^(@) = (sqrt3) +(1 )/( sqrt3 -1) = 2 + sqrt3. Hence de...

    Text Solution

    |

  3. Prove that sin (n+1) x sin (n +2) x + cos (n +1) x cos (n +2) x = cos ...

    Text Solution

    |

  4. if A+ B + C = pi, and cos A = cos B cos C, show that 2 cot B cot C=1.

    Text Solution

    |

  5. Show that (sin (alpha + beta))/( sin (alpha + beta)) = 2, given that ...

    Text Solution

    |

  6. Show that ( cos 10^(@) + sin 10 ^(@))/( cos 10^(@) - sin 10 ^(@)) = ta...

    Text Solution

    |

  7. If sin 2 A = 4/5, find the value of tan A, (0^(@) le A le (pi)/(3))

    Text Solution

    |

  8. Express cot A in terms of cos 2 A

    Text Solution

    |

  9. Write cos 4 theta in terms of cos theta.

    Text Solution

    |

  10. A positive acute angle is divided into two parts whose tangents are 1/...

    Text Solution

    |

  11. Show that cos 10^(@) + cos 110^(@) + cos 130^(@) = 0

    Text Solution

    |

  12. Show that (sin 5 A + 2 sin 8A + sin 11 A)/( sin 8A + 2 sin 11 A + sin ...

    Text Solution

    |

  13. Show that (1)/(2 sin 10^(@)) - 2 sin 70^(@) =1.

    Text Solution

    |

  14. Show that sin 19^(@) + sin 41^(@) + sin 83^(@) = sin 23 ^(@) + sin 37^...

    Text Solution

    |

  15. If sin A = (1)/(sqrt3) and sin B = (1)/(sqrt5) find the value of tan...

    Text Solution

    |

  16. If sin theta = n sin ( theta + 2 alpha ) , show that ( n -1) tan (the...

    Text Solution

    |

  17. If tan "" (alpha )/(2) and tan "" (beta)/( 2) are the roots of the eq...

    Text Solution

    |

  18. Prove that ((cos A + cos B)/( sin A - sin B )) ^(n) + ((sin A + sin B ...

    Text Solution

    |

  19. Find sin ""(x)/(2), cos "" (x)/(2) and tan "" (x)/(2) in each of the c...

    Text Solution

    |

  20. Find sin ""(x)/(2), cos "" (x)/(2) and tan "" (x)/(2) in each of the c...

    Text Solution

    |

  21. Prove that cos 6x = 32 cos ^(6) x - 48 cos ^(4) x + 18 cos ^(2) x -1.

    Text Solution

    |