Home
Class 11
MATHS
Prove that (cos A )/( 1 - sin A ) = ta...

Prove that
`(cos A )/( 1 - sin A ) = tan (45 ^(@) + (A)/(2)),`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \[ \frac{\cos A}{1 - \sin A} = \tan\left(45^\circ + \frac{A}{2}\right), \] we will start with the left-hand side (LHS) and manipulate it to show that it equals the right-hand side (RHS). ### Step 1: Write down the LHS We start with the left-hand side: \[ \text{LHS} = \frac{\cos A}{1 - \sin A}. \] ### Step 2: Use the half-angle identities Recall the half-angle identities: \[ \cos A = \frac{1 - \tan^2\left(\frac{A}{2}\right)}{1 + \tan^2\left(\frac{A}{2}\right)}, \] \[ \sin A = \frac{2\tan\left(\frac{A}{2}\right)}{1 + \tan^2\left(\frac{A}{2}\right)}. \] Substituting these into our LHS gives: \[ \text{LHS} = \frac{\frac{1 - \tan^2\left(\frac{A}{2}\right)}{1 + \tan^2\left(\frac{A}{2}\right)}}{1 - \frac{2\tan\left(\frac{A}{2}\right)}{1 + \tan^2\left(\frac{A}{2}\right)}}. \] ### Step 3: Simplify the denominator To simplify the denominator, we can rewrite it as: \[ 1 - \frac{2\tan\left(\frac{A}{2}\right)}{1 + \tan^2\left(\frac{A}{2}\right)} = \frac{(1 + \tan^2\left(\frac{A}{2}\right)) - 2\tan\left(\frac{A}{2}\right)}{1 + \tan^2\left(\frac{A}{2}\right)} = \frac{(1 - \tan\left(\frac{A}{2}\right))^2}{1 + \tan^2\left(\frac{A}{2}\right)}. \] ### Step 4: Substitute back into the LHS Now substituting this back into the LHS gives: \[ \text{LHS} = \frac{1 - \tan^2\left(\frac{A}{2}\right)}{(1 + \tan^2\left(\frac{A}{2}\right))} \cdot \frac{1 + \tan^2\left(\frac{A}{2}\right)}{(1 - \tan\left(\frac{A}{2}\right))^2}. \] The \(1 + \tan^2\left(\frac{A}{2}\right)\) cancels out: \[ \text{LHS} = \frac{1 - \tan^2\left(\frac{A}{2}\right)}{(1 - \tan\left(\frac{A}{2}\right))^2}. \] ### Step 5: Factor the numerator The numerator can be factored: \[ 1 - \tan^2\left(\frac{A}{2}\right) = (1 - \tan\left(\frac{A}{2}\right))(1 + \tan\left(\frac{A}{2}\right)). \] Thus, we have: \[ \text{LHS} = \frac{(1 - \tan\left(\frac{A}{2}\right))(1 + \tan\left(\frac{A}{2}\right))}{(1 - \tan\left(\frac{A}{2}\right))^2}. \] ### Step 6: Cancel common terms Canceling \(1 - \tan\left(\frac{A}{2}\right)\) from the numerator and denominator gives: \[ \text{LHS} = \frac{1 + \tan\left(\frac{A}{2}\right)}{1 - \tan\left(\frac{A}{2}\right)}. \] ### Step 7: Recognize the tangent addition formula This expression can be recognized as the tangent addition formula: \[ \tan(x + y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}. \] Setting \(x = 45^\circ\) (where \(\tan 45^\circ = 1\)) and \(y = \frac{A}{2}\): \[ \tan\left(45^\circ + \frac{A}{2}\right) = \frac{1 + \tan\left(\frac{A}{2}\right)}{1 - \tan\left(\frac{A}{2}\right)}. \] ### Conclusion Thus, we have shown that: \[ \frac{\cos A}{1 - \sin A} = \tan\left(45^\circ + \frac{A}{2}\right), \] which completes the proof. ---
Promotional Banner

Topper's Solved these Questions

  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5(A)|49 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5 (B) |35 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Chapter Test|25 Videos
  • CONIC SECTIONS

    ICSE|Exercise Multiple Choice Questions |33 Videos

Similar Questions

Explore conceptually related problems

Prove that : (cos A)/(1 + sin A) = sec A - tan A

Prove that: (cos2A)/(1+sin2A) = tan(pi/4-A)

Prove that : ("cos" 2A)/(1+"sin" 2A)="tan"(pi/(4)-A)

Prove that : (1+sin 2A-cos 2A)/(1+sin 2A+cos 2A) = tan A

Prove that : (cos A)/ (1 - tan A) + (sin A)/ (1 - cot A) = cos A + sin A

Prove that : (cos A)/ (1 - tan A) + (sin A)/ (1- cot A) = sin A + cos A

Prove that ("cos"A)/(1+"sin"A)+"tan"A="sec"A

Prove: ( sin 2 A)/( 1 + cos 2 A)= tan A

Prove that : cos A (1 + cot A) + sin A (1 + tan A) = sec A + cosec A

Prove that : (cos ^(2) A + tan ^(2) A - 1 )/( sin ^(2) A ) = tan ^(2) A .

ICSE-COMPOUND AND MULTIPLE ANGLES -CHEPTER TEST
  1. Prove that (cos A )/( 1 - sin A ) = tan (45 ^(@) + (A)/(2)),

    Text Solution

    |

  2. Show that tan 75^(@) = (sqrt3) +(1 )/( sqrt3 -1) = 2 + sqrt3. Hence de...

    Text Solution

    |

  3. Prove that sin (n+1) x sin (n +2) x + cos (n +1) x cos (n +2) x = cos ...

    Text Solution

    |

  4. if A+ B + C = pi, and cos A = cos B cos C, show that 2 cot B cot C=1.

    Text Solution

    |

  5. Show that (sin (alpha + beta))/( sin (alpha + beta)) = 2, given that ...

    Text Solution

    |

  6. Show that ( cos 10^(@) + sin 10 ^(@))/( cos 10^(@) - sin 10 ^(@)) = ta...

    Text Solution

    |

  7. If sin 2 A = 4/5, find the value of tan A, (0^(@) le A le (pi)/(3))

    Text Solution

    |

  8. Express cot A in terms of cos 2 A

    Text Solution

    |

  9. Write cos 4 theta in terms of cos theta.

    Text Solution

    |

  10. A positive acute angle is divided into two parts whose tangents are 1/...

    Text Solution

    |

  11. Show that cos 10^(@) + cos 110^(@) + cos 130^(@) = 0

    Text Solution

    |

  12. Show that (sin 5 A + 2 sin 8A + sin 11 A)/( sin 8A + 2 sin 11 A + sin ...

    Text Solution

    |

  13. Show that (1)/(2 sin 10^(@)) - 2 sin 70^(@) =1.

    Text Solution

    |

  14. Show that sin 19^(@) + sin 41^(@) + sin 83^(@) = sin 23 ^(@) + sin 37^...

    Text Solution

    |

  15. If sin A = (1)/(sqrt3) and sin B = (1)/(sqrt5) find the value of tan...

    Text Solution

    |

  16. If sin theta = n sin ( theta + 2 alpha ) , show that ( n -1) tan (the...

    Text Solution

    |

  17. If tan "" (alpha )/(2) and tan "" (beta)/( 2) are the roots of the eq...

    Text Solution

    |

  18. Prove that ((cos A + cos B)/( sin A - sin B )) ^(n) + ((sin A + sin B ...

    Text Solution

    |

  19. Find sin ""(x)/(2), cos "" (x)/(2) and tan "" (x)/(2) in each of the c...

    Text Solution

    |

  20. Find sin ""(x)/(2), cos "" (x)/(2) and tan "" (x)/(2) in each of the c...

    Text Solution

    |

  21. Prove that cos 6x = 32 cos ^(6) x - 48 cos ^(4) x + 18 cos ^(2) x -1.

    Text Solution

    |