Home
Class 11
MATHS
Prove that tan ((pi )/(4) + (theta )/(...

Prove that
`tan ((pi )/(4) + (theta )/(2) ) + tan ((pi )/(4) - (theta)/(2)) = 2 sec theta.`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \[ \tan\left(\frac{\pi}{4} + \frac{\theta}{2}\right) + \tan\left(\frac{\pi}{4} - \frac{\theta}{2}\right) = 2 \sec \theta, \] we will start by using the tangent addition and subtraction formulas. ### Step 1: Write the Left-Hand Side (LHS) Let’s denote the left-hand side (LHS) as: \[ LHS = \tan\left(\frac{\pi}{4} + \frac{\theta}{2}\right) + \tan\left(\frac{\pi}{4} - \frac{\theta}{2}\right). \] ### Step 2: Apply the Tangent Addition Formula Using the tangent addition formula: \[ \tan(a + b) = \frac{\tan a + \tan b}{1 - \tan a \tan b}, \] we can substitute \( a = \frac{\pi}{4} \) and \( b = \frac{\theta}{2} \) for the first term: \[ \tan\left(\frac{\pi}{4} + \frac{\theta}{2}\right) = \frac{\tan\left(\frac{\pi}{4}\right) + \tan\left(\frac{\theta}{2}\right)}{1 - \tan\left(\frac{\pi}{4}\right) \tan\left(\frac{\theta}{2}\right)}. \] Since \( \tan\left(\frac{\pi}{4}\right) = 1 \): \[ \tan\left(\frac{\pi}{4} + \frac{\theta}{2}\right) = \frac{1 + \tan\left(\frac{\theta}{2}\right)}{1 - \tan\left(\frac{\theta}{2}\right)}. \] ### Step 3: Apply the Tangent Subtraction Formula Now for the second term, using the tangent subtraction formula: \[ \tan\left(\frac{\pi}{4} - \frac{\theta}{2}\right) = \frac{\tan\left(\frac{\pi}{4}\right) - \tan\left(\frac{\theta}{2}\right)}{1 + \tan\left(\frac{\pi}{4}\right) \tan\left(\frac{\theta}{2}\right)}. \] Again substituting \( \tan\left(\frac{\pi}{4}\right) = 1 \): \[ \tan\left(\frac{\pi}{4} - \frac{\theta}{2}\right) = \frac{1 - \tan\left(\frac{\theta}{2}\right)}{1 + \tan\left(\frac{\theta}{2}\right)}. \] ### Step 4: Combine Both Terms Now substituting both terms back into the LHS: \[ LHS = \frac{1 + \tan\left(\frac{\theta}{2}\right)}{1 - \tan\left(\frac{\theta}{2}\right)} + \frac{1 - \tan\left(\frac{\theta}{2}\right)}{1 + \tan\left(\frac{\theta}{2}\right)}. \] ### Step 5: Find a Common Denominator To combine these fractions, we find a common denominator: \[ LHS = \frac{(1 + \tan\left(\frac{\theta}{2}\right))^2 + (1 - \tan\left(\frac{\theta}{2}\right))^2}{(1 - \tan\left(\frac{\theta}{2}\right))(1 + \tan\left(\frac{\theta}{2}\right))}. \] ### Step 6: Simplify the Numerator Expanding the numerator: \[ (1 + \tan\left(\frac{\theta}{2}\right))^2 = 1 + 2\tan\left(\frac{\theta}{2}\right) + \tan^2\left(\frac{\theta}{2}\right), \] \[ (1 - \tan\left(\frac{\theta}{2}\right))^2 = 1 - 2\tan\left(\frac{\theta}{2}\right) + \tan^2\left(\frac{\theta}{2}\right). \] Adding these gives: \[ 2 + 2\tan^2\left(\frac{\theta}{2}\right). \] ### Step 7: Write the LHS Thus, we have: \[ LHS = \frac{2 + 2\tan^2\left(\frac{\theta}{2}\right)}{1 - \tan^2\left(\frac{\theta}{2}\right)}. \] ### Step 8: Factor Out 2 Factoring out 2 from the numerator: \[ LHS = 2 \cdot \frac{1 + \tan^2\left(\frac{\theta}{2}\right)}{1 - \tan^2\left(\frac{\theta}{2}\right)}. \] ### Step 9: Use the Identity Using the identity \( 1 + \tan^2 x = \sec^2 x \): \[ LHS = 2 \cdot \frac{\sec^2\left(\frac{\theta}{2}\right)}{\cos\left(\theta\right)}. \] ### Step 10: Use Cosine Double Angle Identity Using the identity \( \cos\theta = \frac{1 - \tan^2\left(\frac{\theta}{2}\right)}{1 + \tan^2\left(\frac{\theta}{2}\right)} \): \[ LHS = 2 \sec\theta. \] ### Conclusion Thus, we have shown that: \[ LHS = 2 \sec \theta, \] which proves that \[ \tan\left(\frac{\pi}{4} + \frac{\theta}{2}\right) + \tan\left(\frac{\pi}{4} - \frac{\theta}{2}\right) = 2 \sec \theta. \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5(A)|49 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5 (B) |35 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Chapter Test|25 Videos
  • CONIC SECTIONS

    ICSE|Exercise Multiple Choice Questions |33 Videos

Similar Questions

Explore conceptually related problems

Solve : tan ((pi)/(4)+ theta) + tan ((pi)/(4) - theta) = 4

Prove that 1 + tan 2 theta tan theta = sec 2 theta .

Prove that : (sec 8theta - 1)/(sec 4theta - 1) = (tan 8theta)/(tan 2theta)

Prove that : (1+ sin theta)/(1-sin theta) = tan^2 (pi/4 + theta/2)

Prove that tan(theta+(pi)/(6))+cot(theta-(pi)/(6))=(1)/(sin2theta-sin.(pi)/(3))

Prove that sec theta + tan theta = tan (pi/4 + theta/2)

Prove that : tan 4 theta = (4 tan theta - 4 tan^3 theta)/(1-6 tan^2 theta + tan^4 theta) .

Prove that: tan(pi/4+theta)+tan(pi/4-theta)=2sec2theta .

Prove that cosec(pi/4+theta/2)cosec(pi/4-theta/2)=2sec theta

Prove that (tan theta)/(sec theta -1)+ (tan theta)/(sec theta +1) = 2 cosec\ theta

ICSE-COMPOUND AND MULTIPLE ANGLES -CHEPTER TEST
  1. Prove that tan ((pi )/(4) + (theta )/(2) ) + tan ((pi )/(4) - (theta...

    Text Solution

    |

  2. Show that tan 75^(@) = (sqrt3) +(1 )/( sqrt3 -1) = 2 + sqrt3. Hence de...

    Text Solution

    |

  3. Prove that sin (n+1) x sin (n +2) x + cos (n +1) x cos (n +2) x = cos ...

    Text Solution

    |

  4. if A+ B + C = pi, and cos A = cos B cos C, show that 2 cot B cot C=1.

    Text Solution

    |

  5. Show that (sin (alpha + beta))/( sin (alpha + beta)) = 2, given that ...

    Text Solution

    |

  6. Show that ( cos 10^(@) + sin 10 ^(@))/( cos 10^(@) - sin 10 ^(@)) = ta...

    Text Solution

    |

  7. If sin 2 A = 4/5, find the value of tan A, (0^(@) le A le (pi)/(3))

    Text Solution

    |

  8. Express cot A in terms of cos 2 A

    Text Solution

    |

  9. Write cos 4 theta in terms of cos theta.

    Text Solution

    |

  10. A positive acute angle is divided into two parts whose tangents are 1/...

    Text Solution

    |

  11. Show that cos 10^(@) + cos 110^(@) + cos 130^(@) = 0

    Text Solution

    |

  12. Show that (sin 5 A + 2 sin 8A + sin 11 A)/( sin 8A + 2 sin 11 A + sin ...

    Text Solution

    |

  13. Show that (1)/(2 sin 10^(@)) - 2 sin 70^(@) =1.

    Text Solution

    |

  14. Show that sin 19^(@) + sin 41^(@) + sin 83^(@) = sin 23 ^(@) + sin 37^...

    Text Solution

    |

  15. If sin A = (1)/(sqrt3) and sin B = (1)/(sqrt5) find the value of tan...

    Text Solution

    |

  16. If sin theta = n sin ( theta + 2 alpha ) , show that ( n -1) tan (the...

    Text Solution

    |

  17. If tan "" (alpha )/(2) and tan "" (beta)/( 2) are the roots of the eq...

    Text Solution

    |

  18. Prove that ((cos A + cos B)/( sin A - sin B )) ^(n) + ((sin A + sin B ...

    Text Solution

    |

  19. Find sin ""(x)/(2), cos "" (x)/(2) and tan "" (x)/(2) in each of the c...

    Text Solution

    |

  20. Find sin ""(x)/(2), cos "" (x)/(2) and tan "" (x)/(2) in each of the c...

    Text Solution

    |

  21. Prove that cos 6x = 32 cos ^(6) x - 48 cos ^(4) x + 18 cos ^(2) x -1.

    Text Solution

    |