Home
Class 11
MATHS
Prove that sin ^(2) ((pi)/(8) + (theta...

Prove that
`sin ^(2) ((pi)/(8) + (theta)/(2)) - sin ^(2) ((pi)/(8) - (theta)/(2)) = sin ""(pi)/(4) sin theta.`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \[ \sin^2\left(\frac{\pi}{8} + \frac{\theta}{2}\right) - \sin^2\left(\frac{\pi}{8} - \frac{\theta}{2}\right) = \sin\left(\frac{\pi}{4}\right) \sin(\theta), \] we will start by working on the left-hand side (LHS) of the equation. ### Step 1: Identify the LHS Let \[ LHS = \sin^2\left(\frac{\pi}{8} + \frac{\theta}{2}\right) - \sin^2\left(\frac{\pi}{8} - \frac{\theta}{2}\right). \] ### Step 2: Use the identity for the difference of squares We can use the identity \(a^2 - b^2 = (a+b)(a-b)\). Here, let \(A = \frac{\pi}{8} + \frac{\theta}{2}\) and \(B = \frac{\pi}{8} - \frac{\theta}{2}\). Thus, we have: \[ LHS = \left(\sin\left(\frac{\pi}{8} + \frac{\theta}{2}\right) + \sin\left(\frac{\pi}{8} - \frac{\theta}{2}\right)\right) \left(\sin\left(\frac{\pi}{8} + \frac{\theta}{2}\right) - \sin\left(\frac{\pi}{8} - \frac{\theta}{2}\right)\right). \] ### Step 3: Simplify the first term Using the sine addition formula, we have: \[ \sin A + \sin B = 2 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right). \] Calculating \(A + B\) and \(A - B\): \[ A + B = \left(\frac{\pi}{8} + \frac{\theta}{2}\right) + \left(\frac{\pi}{8} - \frac{\theta}{2}\right) = \frac{\pi}{4}, \] \[ A - B = \left(\frac{\pi}{8} + \frac{\theta}{2}\right) - \left(\frac{\pi}{8} - \frac{\theta}{2}\right) = \theta. \] Thus, \[ \sin A + \sin B = 2 \sin\left(\frac{\pi}{4}\right) \cos\left(\frac{\theta}{2}\right). \] ### Step 4: Simplify the second term Now for the second term, we have: \[ \sin A - \sin B = 2 \cos\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right). \] Using the same calculations: \[ \sin A - \sin B = 2 \cos\left(\frac{\pi}{4}\right) \sin\left(\frac{\theta}{2}\right). \] ### Step 5: Combine the results Substituting these results back into the LHS: \[ LHS = \left(2 \sin\left(\frac{\pi}{4}\right) \cos\left(\frac{\theta}{2}\right)\right) \left(2 \cos\left(\frac{\pi}{4}\right) \sin\left(\frac{\theta}{2}\right)\right). \] ### Step 6: Simplify further Since \(\sin\left(\frac{\pi}{4}\right) = \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}\): \[ LHS = 2 \cdot \frac{\sqrt{2}}{2} \cdot \cos\left(\frac{\theta}{2}\right) \cdot 2 \cdot \frac{\sqrt{2}}{2} \cdot \sin\left(\frac{\theta}{2}\right). \] This simplifies to: \[ LHS = 2 \cdot \frac{1}{2} \cdot \sin(\theta) = \sin(\theta). \] ### Step 7: Final result Thus, we have: \[ LHS = \sin\left(\frac{\pi}{4}\right) \sin(\theta). \] Hence, we have proved that: \[ \sin^2\left(\frac{\pi}{8} + \frac{\theta}{2}\right) - \sin^2\left(\frac{\pi}{8} - \frac{\theta}{2}\right) = \sin\left(\frac{\pi}{4}\right) \sin(\theta). \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5(A)|49 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5 (B) |35 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Chapter Test|25 Videos
  • CONIC SECTIONS

    ICSE|Exercise Multiple Choice Questions |33 Videos

Similar Questions

Explore conceptually related problems

Find the value of cos^(2)((pi)/(6) - (theta)/(2)) - sin^(2) ((pi)/(6)+(theta)/(2)) .

Show that 4 sin ((pi)/(3) - theta ) sin ((pi)/(3) + theta) =3-4 sin ^(2) theta

Prove that: sin^2(pi/8)+sin^2((3pi)/8)+sin^2((5pi)/8)+sin^2((7pi)/8)=2

Solve: sin2theta=sin((2pi)/(3)-theta)

To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8pi)/(7) , we follow the following method. Put 7theta = 2npi , where n is any integer. Then " " sin 4 theta = sin( 2npi - 3theta) = - sin 3theta This means that sin theta takes the values 0, pm sin (2pi//7), pmsin(2pi//7), pm sin(4pi//7), and pm sin (8pi//7) . From Eq. (i), we now get " " 2 sin 2 theta cos 2theta = 4 sin^(3) theta - 3 sin theta or 4 sin theta cos theta (1-2 sin^(2) theta)= sin theta ( 4sin ^(2) theta -3) Rejecting the value sin theta =0 , we get " " 4 cos theta (1-2 sin^(2) theta ) = 4 sin ^(2) theta - 3 or 16 cos^(2) theta (1-2 sin^(2) theta)^(2) = ( 4sin ^(2) theta -3)^(2) or 16(1-sin^(2) theta) (1-4 sin^(2) theta + 4 sin ^(4) theta) " " = 16 sin ^(4) theta - 24 sin ^(2) theta +9 or " " 64 sin^(6) theta - 112 sin^(4) theta - 56 sin^(2) theta -7 =0 This is cubic in sin^(2) theta with the roots sin^(2)( 2pi//7), sin^(2) (4pi//7), and sin^(2)(8pi//7) . The sum of these roots is " " sin^(2)""(2pi)/(7) + sin^(2)""(4pi)/(7) + sin ^(2)""(8pi)/(7) = (112)/(64) = (7)/(4) . The value of (tan^(2)""(pi)/(7) + tan^(2)""(2pi)/(7) + tan^(2)""(3pi)/(7))/(cot^(2)""(pi)/(7) + cot^(2)""(2pi)/(7) + cot^(2)""(3pi)/(7)) is

To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8pi)/(7) , we follow the following method. Put 7theta = 2npi , where n is any integer. Then " " sin 4 theta = sin( 2npi - 3theta) = - sin 3theta This means that sin theta takes the values 0, pm sin (2pi//7), pmsin(2pi//7), pm sin(4pi//7), and pm sin (8pi//7) . From Eq. (i), we now get " " 2 sin 2 theta cos 2theta = 4 sin^(3) theta - 3 sin theta or 4 sin theta cos theta (1-2 sin^(2) theta)= sin theta ( 4sin ^(2) theta -3) Rejecting the value sin theta =0 , we get " " 4 cos theta (1-2 sin^(2) theta ) = 4 sin ^(2) theta - 3 or 16 cos^(2) theta (1-2 sin^(2) theta)^(2) = ( 4sin ^(2) theta -3)^(2) or 16(1-sin^(2) theta) (1-4 sin^(2) theta + 4 sin ^(4) theta) " " = 16 sin ^(4) theta - 24 sin ^(2) theta +9 or " " 64 sin^(6) theta - 112 sin^(4) theta - 56 sin^(2) theta -7 =0 This is cubic in sin^(2) theta with the roots sin^(2)( 2pi//7), sin^(2) (4pi//7), and sin^(2)(8pi//7) . The sum of these roots is " " sin^(2)""(2pi)/(7) + sin^(2)""(4pi)/(7) + sin ^(2)""(8pi)/(7) = (112)/(64) = (7)/(4) . The value of (tan^(2)""(pi)/(7) + tan^(2)""(2pi)/(7) + tan^(2)""(3pi)/(7))xx (cot^(2)""(pi)/(7) + cot^(2)""(2pi)/(7) + cot^(2)""(3pi)/(7)) is

To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8pi)/(7) , we follow the following method. Put 7theta = 2npi , where n is any integer. Then " " sin 4 theta = sin( 2npi - 3theta) = - sin 3theta This means that sin theta takes the values 0, pm sin (2pi//7), pmsin(2pi//7), pm sin(4pi//7), and pm sin (8pi//7) . From Eq. (i), we now get " " 2 sin 2 theta cos 2theta = 4 sin^(3) theta - 3 sin theta or 4 sin theta cos theta (1-2 sin^(2) theta)= sin theta ( 4sin ^(2) theta -3) Rejecting the value sin theta =0 , we get " " 4 cos theta (1-2 sin^(2) theta ) = 4 sin ^(2) theta - 3 or 16 cos^(2) theta (1-2 sin^(2) theta)^(2) = ( 4sin ^(2) theta -3)^(2) or 16(1-sin^(2) theta) (1-4 sin^(2) theta + 4 sin ^(4) theta) " " = 16 sin ^(4) theta - 24 sin ^(2) theta +9 or " " 64 sin^(6) theta - 112 sin^(4) theta - 56 sin^(2) theta -7 =0 This is cubic in sin^(2) theta with the roots sin^(2)( 2pi//7), sin^(2) (4pi//7), and sin^(2)(8pi//7) . The sum of these roots is " " sin^(2)""(2pi)/(7) + sin^(2)""(4pi)/(7) + sin ^(2)""(8pi)/(7) = (112)/(64) = (7)/(4) . The value of tan^(2)""(pi)/(7)tan ^(2)""(2pi)/(7) tan ^(2)""(3pi)/(7) is

Prove that (2 sin theta - sin 2theta)/(2 sin theta + sin 2theta) = tan^2\ theta/2

Prove that: sin^4(pi/8)+sin^4((3pi)/8)+sin^4((5pi)/8)+sin^4((7pi)/8)=3/2

Prove that: sin^2(A/2+pi/8) - sin^2(A/2-pi/8)= 1/sqrt(2)sinA

ICSE-COMPOUND AND MULTIPLE ANGLES -CHEPTER TEST
  1. Prove that sin ^(2) ((pi)/(8) + (theta)/(2)) - sin ^(2) ((pi)/(8) -...

    Text Solution

    |

  2. Show that tan 75^(@) = (sqrt3) +(1 )/( sqrt3 -1) = 2 + sqrt3. Hence de...

    Text Solution

    |

  3. Prove that sin (n+1) x sin (n +2) x + cos (n +1) x cos (n +2) x = cos ...

    Text Solution

    |

  4. if A+ B + C = pi, and cos A = cos B cos C, show that 2 cot B cot C=1.

    Text Solution

    |

  5. Show that (sin (alpha + beta))/( sin (alpha + beta)) = 2, given that ...

    Text Solution

    |

  6. Show that ( cos 10^(@) + sin 10 ^(@))/( cos 10^(@) - sin 10 ^(@)) = ta...

    Text Solution

    |

  7. If sin 2 A = 4/5, find the value of tan A, (0^(@) le A le (pi)/(3))

    Text Solution

    |

  8. Express cot A in terms of cos 2 A

    Text Solution

    |

  9. Write cos 4 theta in terms of cos theta.

    Text Solution

    |

  10. A positive acute angle is divided into two parts whose tangents are 1/...

    Text Solution

    |

  11. Show that cos 10^(@) + cos 110^(@) + cos 130^(@) = 0

    Text Solution

    |

  12. Show that (sin 5 A + 2 sin 8A + sin 11 A)/( sin 8A + 2 sin 11 A + sin ...

    Text Solution

    |

  13. Show that (1)/(2 sin 10^(@)) - 2 sin 70^(@) =1.

    Text Solution

    |

  14. Show that sin 19^(@) + sin 41^(@) + sin 83^(@) = sin 23 ^(@) + sin 37^...

    Text Solution

    |

  15. If sin A = (1)/(sqrt3) and sin B = (1)/(sqrt5) find the value of tan...

    Text Solution

    |

  16. If sin theta = n sin ( theta + 2 alpha ) , show that ( n -1) tan (the...

    Text Solution

    |

  17. If tan "" (alpha )/(2) and tan "" (beta)/( 2) are the roots of the eq...

    Text Solution

    |

  18. Prove that ((cos A + cos B)/( sin A - sin B )) ^(n) + ((sin A + sin B ...

    Text Solution

    |

  19. Find sin ""(x)/(2), cos "" (x)/(2) and tan "" (x)/(2) in each of the c...

    Text Solution

    |

  20. Find sin ""(x)/(2), cos "" (x)/(2) and tan "" (x)/(2) in each of the c...

    Text Solution

    |

  21. Prove that cos 6x = 32 cos ^(6) x - 48 cos ^(4) x + 18 cos ^(2) x -1.

    Text Solution

    |