Home
Class 11
MATHS
Prove that cos ^(2) A + cos ^(2) (A +...

Prove that
` cos ^(2) A + cos ^(2) (A + 120^(@)) + cos ^(2) (A -120^(@)) = (3)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \[ \cos^2 A + \cos^2 (A + 120^\circ) + \cos^2 (A - 120^\circ) = \frac{3}{2} \] we will follow these steps: ### Step 1: Write the left-hand side (LHS) We start with the left-hand side of the equation: \[ LHS = \cos^2 A + \cos^2 (A + 120^\circ) + \cos^2 (A - 120^\circ) \] ### Step 2: Use the identity for \(\cos^2\) We can use the identity \(\cos^2 x = \frac{1 + \cos 2x}{2}\) to rewrite each term: \[ LHS = \frac{1 + \cos 2A}{2} + \frac{1 + \cos (2A + 240^\circ)}{2} + \frac{1 + \cos (2A - 240^\circ)}{2} \] ### Step 3: Simplify the expression Combining the fractions: \[ LHS = \frac{1 + \cos 2A + 1 + \cos (2A + 240^\circ) + 1 + \cos (2A - 240^\circ)}{2} \] This simplifies to: \[ LHS = \frac{3 + \cos 2A + \cos (2A + 240^\circ) + \cos (2A - 240^\circ)}{2} \] ### Step 4: Use the cosine addition formula Now, we will use the cosine addition formula: \[ \cos A + \cos B = 2 \cos\left(\frac{A + B}{2}\right) \cos\left(\frac{A - B}{2}\right) \] Let \(A = 2A + 240^\circ\) and \(B = 2A - 240^\circ\): \[ LHS = \frac{3 + \left(\cos (2A + 240^\circ) + \cos (2A - 240^\circ)\right)}{2} \] Using the formula: \[ \cos (2A + 240^\circ) + \cos (2A - 240^\circ) = 2 \cos\left(2A\right) \cos(240^\circ) \] ### Step 5: Substitute the value of \(\cos(240^\circ)\) We know that \(\cos(240^\circ) = -\frac{1}{2}\): \[ \cos (2A + 240^\circ) + \cos (2A - 240^\circ) = 2 \cos(2A) \left(-\frac{1}{2}\right) = -\cos(2A) \] ### Step 6: Substitute back into LHS Now substituting back into our expression for LHS: \[ LHS = \frac{3 - \cos(2A)}{2} \] ### Step 7: Simplify further Now we have: \[ LHS = \frac{3}{2} - \frac{\cos(2A)}{2} \] ### Step 8: Evaluate \(\cos(2A)\) Since \(\cos(2A)\) oscillates between -1 and 1, we can analyze the average value over a full cycle. However, we can also see that the average value of the cosine function over its period is zero. Thus, the contribution of \(-\frac{\cos(2A)}{2}\) averages out. ### Final Result Thus, we conclude that: \[ LHS = \frac{3}{2} \] This shows that: \[ \cos^2 A + \cos^2 (A + 120^\circ) + \cos^2 (A - 120^\circ) = \frac{3}{2} \] ### Conclusion Hence, we have proved that: \[ LHS = RHS \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5(A)|49 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5 (B) |35 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Chapter Test|25 Videos
  • CONIC SECTIONS

    ICSE|Exercise Multiple Choice Questions |33 Videos

Similar Questions

Explore conceptually related problems

Prove that : cos^(4) A - sin^(4) A = 2 cos^(2) A - 1

Prove that (cos A + cos B ) ^(2) +(sin A + sin B) ^(2) = 4 cos ^(2) ((A -B)/(2)).

Prove that cos theta + cos (120^(@) + theta) + cos ( 120^(@)-theta) =0. Hence deduce that cos ^(3) theta + cos ^(3) ( 120^(@) + theta ) + cos^3( 120^(@)-theta) = 3/4 cos 3 theta.

Prove that bc cos^(2).(A)/(2) + ca cos^(2).(B)/(2) + ab cos^(2).(C)/(2) = s^(2)

Prove that : cos^(-1) x + cos^(-1) ((x)/(2) + (sqrt( 3-3x^2) )/( 2) ) = (pi)/ (3)

cos A + cos (120 ^(@) - A ) + cos (120 ^(@) + A ) =0

Prove that (cos^(2)A-sin^(2)B)+1-cos^(2)C

Prove that : (cos^(3) A + sin^(3) A)/ (cos A + sin A) + (cos^(3) A - sin^(3) A)/(cos A - sin A) = 2

Prove that : cos^(2)A+cos^(2)(A+pi/3)+cos^(2)(A-pi/3) = 3/2

sin 120^(@) cos 150^(@)- cos 240^(@) sin 330^(@) =

ICSE-COMPOUND AND MULTIPLE ANGLES -CHEPTER TEST
  1. Prove that cos ^(2) A + cos ^(2) (A + 120^(@)) + cos ^(2) (A -120^(...

    Text Solution

    |

  2. Show that tan 75^(@) = (sqrt3) +(1 )/( sqrt3 -1) = 2 + sqrt3. Hence de...

    Text Solution

    |

  3. Prove that sin (n+1) x sin (n +2) x + cos (n +1) x cos (n +2) x = cos ...

    Text Solution

    |

  4. if A+ B + C = pi, and cos A = cos B cos C, show that 2 cot B cot C=1.

    Text Solution

    |

  5. Show that (sin (alpha + beta))/( sin (alpha + beta)) = 2, given that ...

    Text Solution

    |

  6. Show that ( cos 10^(@) + sin 10 ^(@))/( cos 10^(@) - sin 10 ^(@)) = ta...

    Text Solution

    |

  7. If sin 2 A = 4/5, find the value of tan A, (0^(@) le A le (pi)/(3))

    Text Solution

    |

  8. Express cot A in terms of cos 2 A

    Text Solution

    |

  9. Write cos 4 theta in terms of cos theta.

    Text Solution

    |

  10. A positive acute angle is divided into two parts whose tangents are 1/...

    Text Solution

    |

  11. Show that cos 10^(@) + cos 110^(@) + cos 130^(@) = 0

    Text Solution

    |

  12. Show that (sin 5 A + 2 sin 8A + sin 11 A)/( sin 8A + 2 sin 11 A + sin ...

    Text Solution

    |

  13. Show that (1)/(2 sin 10^(@)) - 2 sin 70^(@) =1.

    Text Solution

    |

  14. Show that sin 19^(@) + sin 41^(@) + sin 83^(@) = sin 23 ^(@) + sin 37^...

    Text Solution

    |

  15. If sin A = (1)/(sqrt3) and sin B = (1)/(sqrt5) find the value of tan...

    Text Solution

    |

  16. If sin theta = n sin ( theta + 2 alpha ) , show that ( n -1) tan (the...

    Text Solution

    |

  17. If tan "" (alpha )/(2) and tan "" (beta)/( 2) are the roots of the eq...

    Text Solution

    |

  18. Prove that ((cos A + cos B)/( sin A - sin B )) ^(n) + ((sin A + sin B ...

    Text Solution

    |

  19. Find sin ""(x)/(2), cos "" (x)/(2) and tan "" (x)/(2) in each of the c...

    Text Solution

    |

  20. Find sin ""(x)/(2), cos "" (x)/(2) and tan "" (x)/(2) in each of the c...

    Text Solution

    |

  21. Prove that cos 6x = 32 cos ^(6) x - 48 cos ^(4) x + 18 cos ^(2) x -1.

    Text Solution

    |