Home
Class 11
MATHS
Prove that cos ^(4) ""(pi)/(8) + cos ^...

Prove that
`cos ^(4) ""(pi)/(8) + cos ^(4) ""(3pi)/(8) + cos ^(4) ""(5pi)/(8) + cos ^(4) "" (7pi)/(8) = (3)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \[ \cos^4\left(\frac{\pi}{8}\right) + \cos^4\left(\frac{3\pi}{8}\right) + \cos^4\left(\frac{5\pi}{8}\right) + \cos^4\left(\frac{7\pi}{8}\right) = \frac{3}{2} \] we will follow these steps: ### Step 1: Rewrite the terms using cosine properties We know that: \[ \cos\left(\frac{5\pi}{8}\right) = \cos\left(\pi - \frac{3\pi}{8}\right) = -\cos\left(\frac{3\pi}{8}\right) \] and \[ \cos\left(\frac{7\pi}{8}\right) = \cos\left(\pi - \frac{\pi}{8}\right) = -\cos\left(\frac{\pi}{8}\right) \] Thus, we can rewrite the expression as: \[ \cos^4\left(\frac{\pi}{8}\right) + \cos^4\left(\frac{3\pi}{8}\right) + \left(-\cos\left(\frac{3\pi}{8}\right)\right)^4 + \left(-\cos\left(\frac{\pi}{8}\right)\right)^4 \] This simplifies to: \[ \cos^4\left(\frac{\pi}{8}\right) + \cos^4\left(\frac{3\pi}{8}\right) + \cos^4\left(\frac{3\pi}{8}\right) + \cos^4\left(\frac{\pi}{8}\right) \] ### Step 2: Combine like terms Combining the terms gives: \[ 2\cos^4\left(\frac{\pi}{8}\right) + 2\cos^4\left(\frac{3\pi}{8}\right) \] Factoring out the 2: \[ 2\left(\cos^4\left(\frac{\pi}{8}\right) + \cos^4\left(\frac{3\pi}{8}\right)\right) \] ### Step 3: Use the identity for cosine powers Using the identity: \[ \cos^4 x = \left(\cos^2 x\right)^2 = \left(\frac{1 + \cos(2x)}{2}\right)^2 \] we can express: \[ \cos^4\left(\frac{\pi}{8}\right) = \left(\frac{1 + \cos\left(\frac{\pi}{4}\right)}{2}\right)^2 \] and \[ \cos^4\left(\frac{3\pi}{8}\right) = \left(\frac{1 + \cos\left(\frac{3\pi}{4}\right)}{2}\right)^2 \] ### Step 4: Calculate values Calculating these gives: \[ \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}, \quad \cos\left(\frac{3\pi}{4}\right) = -\frac{1}{\sqrt{2}} \] Thus: \[ \cos^4\left(\frac{\pi}{8}\right) = \left(\frac{1 + \frac{1}{\sqrt{2}}}{2}\right)^2 \] and \[ \cos^4\left(\frac{3\pi}{8}\right) = \left(\frac{1 - \frac{1}{\sqrt{2}}}{2}\right)^2 \] ### Step 5: Substitute and simplify Substituting these values back into the equation: \[ 2\left(\left(\frac{1 + \frac{1}{\sqrt{2}}}{2}\right)^2 + \left(\frac{1 - \frac{1}{\sqrt{2}}}{2}\right)^2\right) \] Calculating the squares and simplifying leads to: \[ = 2\left(\frac{(1 + \frac{1}{\sqrt{2}})^2 + (1 - \frac{1}{\sqrt{2}})^2}{4}\right) \] ### Step 6: Final simplification This results in: \[ = \frac{1}{2}\left(2 + 2\cdot\frac{1}{2}\right) = \frac{3}{2} \] ### Conclusion Thus, we have shown that: \[ \cos^4\left(\frac{\pi}{8}\right) + \cos^4\left(\frac{3\pi}{8}\right) + \cos^4\left(\frac{5\pi}{8}\right) + \cos^4\left(\frac{7\pi}{8}\right) = \frac{3}{2} \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5(A)|49 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5 (B) |35 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Chapter Test|25 Videos
  • CONIC SECTIONS

    ICSE|Exercise Multiple Choice Questions |33 Videos

Similar Questions

Explore conceptually related problems

Prove that: cos ^(4) ""(pi)/(8) + cos ^(4) ""(3pi)/(8) + sin ^(4) "" (5pi)/(8) + sin ^(4)""(7pi)/(8) = 3/2.

sin ^(4) "" (pi)/(8) + sin ^(4) "" (3pi)/(8) + sin ^(4) "" (5pi)/(8) + sin ^(4)"" (7pi)/(8) = (3)/(2).

Find cos "" (7pi)/(8).

Prove that: cos^(2)((pi)/(8)) + cos^(2)((3pi)/(8)) + cos^(2)((5pi)/(8))+ cos^(2)((7pi)/(8))=2

Evaluate : 8 cos ^(3) ""(pi)/(9)- 6cos ""(pi)/(9)

Prove that cos ""(pi)/(9) cos ""( 2pi)/(9) cos "" (3pi)/(9) cos ""(4pi)/(9) = (1)/(2 ^(4)).

Prove that cos "" (2pi)/(15) cos "" (4pi)/(15) cos "" (8pi)/(15) cos "" (14pi)/(15) = (1)/(16).

Prove that : cos(pi/7)cos((2pi)/7) cos((3pi)/7)=1/8

Prove that: 2cos pi/(13) cos (9pi)/(13) +cos (3pi)/(13) +cos (5pi)/(13)=0

Prove that cos ((2pi)/7)+ cos ((4pi)/7) + cos ((6pi)/7) = - 1/2

ICSE-COMPOUND AND MULTIPLE ANGLES -CHEPTER TEST
  1. Prove that cos ^(4) ""(pi)/(8) + cos ^(4) ""(3pi)/(8) + cos ^(4) ""(...

    Text Solution

    |

  2. Show that tan 75^(@) = (sqrt3) +(1 )/( sqrt3 -1) = 2 + sqrt3. Hence de...

    Text Solution

    |

  3. Prove that sin (n+1) x sin (n +2) x + cos (n +1) x cos (n +2) x = cos ...

    Text Solution

    |

  4. if A+ B + C = pi, and cos A = cos B cos C, show that 2 cot B cot C=1.

    Text Solution

    |

  5. Show that (sin (alpha + beta))/( sin (alpha + beta)) = 2, given that ...

    Text Solution

    |

  6. Show that ( cos 10^(@) + sin 10 ^(@))/( cos 10^(@) - sin 10 ^(@)) = ta...

    Text Solution

    |

  7. If sin 2 A = 4/5, find the value of tan A, (0^(@) le A le (pi)/(3))

    Text Solution

    |

  8. Express cot A in terms of cos 2 A

    Text Solution

    |

  9. Write cos 4 theta in terms of cos theta.

    Text Solution

    |

  10. A positive acute angle is divided into two parts whose tangents are 1/...

    Text Solution

    |

  11. Show that cos 10^(@) + cos 110^(@) + cos 130^(@) = 0

    Text Solution

    |

  12. Show that (sin 5 A + 2 sin 8A + sin 11 A)/( sin 8A + 2 sin 11 A + sin ...

    Text Solution

    |

  13. Show that (1)/(2 sin 10^(@)) - 2 sin 70^(@) =1.

    Text Solution

    |

  14. Show that sin 19^(@) + sin 41^(@) + sin 83^(@) = sin 23 ^(@) + sin 37^...

    Text Solution

    |

  15. If sin A = (1)/(sqrt3) and sin B = (1)/(sqrt5) find the value of tan...

    Text Solution

    |

  16. If sin theta = n sin ( theta + 2 alpha ) , show that ( n -1) tan (the...

    Text Solution

    |

  17. If tan "" (alpha )/(2) and tan "" (beta)/( 2) are the roots of the eq...

    Text Solution

    |

  18. Prove that ((cos A + cos B)/( sin A - sin B )) ^(n) + ((sin A + sin B ...

    Text Solution

    |

  19. Find sin ""(x)/(2), cos "" (x)/(2) and tan "" (x)/(2) in each of the c...

    Text Solution

    |

  20. Find sin ""(x)/(2), cos "" (x)/(2) and tan "" (x)/(2) in each of the c...

    Text Solution

    |

  21. Prove that cos 6x = 32 cos ^(6) x - 48 cos ^(4) x + 18 cos ^(2) x -1.

    Text Solution

    |