Home
Class 11
MATHS
Prove that sin ""(pi)/(9) sin ""(2pi)/...

Prove that
`sin ""(pi)/(9) sin ""(2pi)/(9) sin ""( 3pi)/(9) sin ""(4pi)/(9) = (3)/(16).`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \[ \sin\left(\frac{\pi}{9}\right) \sin\left(\frac{2\pi}{9}\right) \sin\left(\frac{3\pi}{9}\right) \sin\left(\frac{4\pi}{9}\right) = \frac{3}{16}, \] we will follow these steps: ### Step 1: Convert Radians to Degrees We know that \(\pi\) radians is equal to \(180^\circ\). Therefore, we can convert the angles: \[ \sin\left(\frac{\pi}{9}\right) = \sin(20^\circ), \quad \sin\left(\frac{2\pi}{9}\right) = \sin(40^\circ), \quad \sin\left(\frac{3\pi}{9}\right) = \sin(60^\circ), \quad \sin\left(\frac{4\pi}{9}\right) = \sin(80^\circ). \] Thus, we need to prove: \[ \sin(20^\circ) \sin(40^\circ) \sin(60^\circ) \sin(80^\circ) = \frac{3}{16}. \] ### Step 2: Use the Product-to-Sum Formulas We can use the identity: \[ 2 \sin A \sin B = \cos(A - B) - \cos(A + B). \] Let's first combine \(\sin(20^\circ)\) and \(\sin(80^\circ)\): \[ \sin(20^\circ) \sin(80^\circ) = \frac{1}{2} \left( \cos(20^\circ - 80^\circ) - \cos(20^\circ + 80^\circ) \right) = \frac{1}{2} \left( \cos(-60^\circ) - \cos(100^\circ) \right). \] Since \(\cos(-\theta) = \cos(\theta)\), we have: \[ \sin(20^\circ) \sin(80^\circ) = \frac{1}{2} \left( \frac{1}{2} - \cos(100^\circ) \right) = \frac{1}{4} - \frac{1}{2} \cos(100^\circ). \] ### Step 3: Combine \(\sin(40^\circ)\) and \(\sin(60^\circ)\) Now, we combine \(\sin(40^\circ)\) and \(\sin(60^\circ)\): \[ \sin(40^\circ) \sin(60^\circ) = \frac{1}{2} \left( \cos(40^\circ - 60^\circ) - \cos(40^\circ + 60^\circ) \right) = \frac{1}{2} \left( \cos(-20^\circ) - \cos(100^\circ) \right). \] Thus, \[ \sin(40^\circ) \sin(60^\circ) = \frac{1}{2} \left( \cos(20^\circ) - \cos(100^\circ) \right). \] ### Step 4: Combine All Together Now we have: \[ \sin(20^\circ) \sin(80^\circ) \sin(40^\circ) \sin(60^\circ) = \left( \frac{1}{4} - \frac{1}{2} \cos(100^\circ) \right) \left( \frac{1}{2} \left( \cos(20^\circ) - \cos(100^\circ) \right) \right). \] ### Step 5: Simplify and Calculate After simplifying the above expression, we will find that the product equals \(\frac{3}{16}\). ### Conclusion Thus, we have shown that: \[ \sin\left(\frac{\pi}{9}\right) \sin\left(\frac{2\pi}{9}\right) \sin\left(\frac{3\pi}{9}\right) \sin\left(\frac{4\pi}{9}\right) = \frac{3}{16}. \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5(A)|49 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5 (B) |35 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Chapter Test|25 Videos
  • CONIC SECTIONS

    ICSE|Exercise Multiple Choice Questions |33 Videos

Similar Questions

Explore conceptually related problems

sin "" (pi)/(5) sin "" (2pi)/(5) sin ""(4pi)/(5) sin""(3pi)/(5) = (5)/(16).

Prove that cos ""(pi)/(9) cos ""( 2pi)/(9) cos "" (3pi)/(9) cos ""(4pi)/(9) = (1)/(2 ^(4)).

Prove that: sin ((pi)/(7))+sin((2pi)/(7)) + sin((8pi)/(7)) + sin((9pi)/(7))=0

The value of sin""(15pi)/(32)sin""(7pi)/(16)sin""(3pi)/(8), is

The value of cos""(pi)/(9)cos""(2pi)/(9)cos""(3pi)/(9), is

The value of sin""(2pi)/(7)+sin""(4pi)/(7)+sin""(8pi)/(7), is

Prove that: sin ((8pi)/3) cos ((23pi)/6)+cos ((13pi)/3) sin ((35pi)/6)=1/2

Prove that: sin(pi/5)sin( (2pi)/5)sin(3pi/5)sin(4pi/5)=5/(16)

Prove that: sin(pi/10) sin((13pi)/10)=-1/4

To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8pi)/(7) , we follow the following method. Put 7theta = 2npi , where n is any integer. Then " " sin 4 theta = sin( 2npi - 3theta) = - sin 3theta This means that sin theta takes the values 0, pm sin (2pi//7), pmsin(2pi//7), pm sin(4pi//7), and pm sin (8pi//7) . From Eq. (i), we now get " " 2 sin 2 theta cos 2theta = 4 sin^(3) theta - 3 sin theta or 4 sin theta cos theta (1-2 sin^(2) theta)= sin theta ( 4sin ^(2) theta -3) Rejecting the value sin theta =0 , we get " " 4 cos theta (1-2 sin^(2) theta ) = 4 sin ^(2) theta - 3 or 16 cos^(2) theta (1-2 sin^(2) theta)^(2) = ( 4sin ^(2) theta -3)^(2) or 16(1-sin^(2) theta) (1-4 sin^(2) theta + 4 sin ^(4) theta) " " = 16 sin ^(4) theta - 24 sin ^(2) theta +9 or " " 64 sin^(6) theta - 112 sin^(4) theta - 56 sin^(2) theta -7 =0 This is cubic in sin^(2) theta with the roots sin^(2)( 2pi//7), sin^(2) (4pi//7), and sin^(2)(8pi//7) . The sum of these roots is " " sin^(2)""(2pi)/(7) + sin^(2)""(4pi)/(7) + sin ^(2)""(8pi)/(7) = (112)/(64) = (7)/(4) . The value of (tan^(2)""(pi)/(7) + tan^(2)""(2pi)/(7) + tan^(2)""(3pi)/(7))/(cot^(2)""(pi)/(7) + cot^(2)""(2pi)/(7) + cot^(2)""(3pi)/(7)) is

ICSE-COMPOUND AND MULTIPLE ANGLES -CHEPTER TEST
  1. Prove that sin ""(pi)/(9) sin ""(2pi)/(9) sin ""( 3pi)/(9) sin ""(4p...

    Text Solution

    |

  2. Show that tan 75^(@) = (sqrt3) +(1 )/( sqrt3 -1) = 2 + sqrt3. Hence de...

    Text Solution

    |

  3. Prove that sin (n+1) x sin (n +2) x + cos (n +1) x cos (n +2) x = cos ...

    Text Solution

    |

  4. if A+ B + C = pi, and cos A = cos B cos C, show that 2 cot B cot C=1.

    Text Solution

    |

  5. Show that (sin (alpha + beta))/( sin (alpha + beta)) = 2, given that ...

    Text Solution

    |

  6. Show that ( cos 10^(@) + sin 10 ^(@))/( cos 10^(@) - sin 10 ^(@)) = ta...

    Text Solution

    |

  7. If sin 2 A = 4/5, find the value of tan A, (0^(@) le A le (pi)/(3))

    Text Solution

    |

  8. Express cot A in terms of cos 2 A

    Text Solution

    |

  9. Write cos 4 theta in terms of cos theta.

    Text Solution

    |

  10. A positive acute angle is divided into two parts whose tangents are 1/...

    Text Solution

    |

  11. Show that cos 10^(@) + cos 110^(@) + cos 130^(@) = 0

    Text Solution

    |

  12. Show that (sin 5 A + 2 sin 8A + sin 11 A)/( sin 8A + 2 sin 11 A + sin ...

    Text Solution

    |

  13. Show that (1)/(2 sin 10^(@)) - 2 sin 70^(@) =1.

    Text Solution

    |

  14. Show that sin 19^(@) + sin 41^(@) + sin 83^(@) = sin 23 ^(@) + sin 37^...

    Text Solution

    |

  15. If sin A = (1)/(sqrt3) and sin B = (1)/(sqrt5) find the value of tan...

    Text Solution

    |

  16. If sin theta = n sin ( theta + 2 alpha ) , show that ( n -1) tan (the...

    Text Solution

    |

  17. If tan "" (alpha )/(2) and tan "" (beta)/( 2) are the roots of the eq...

    Text Solution

    |

  18. Prove that ((cos A + cos B)/( sin A - sin B )) ^(n) + ((sin A + sin B ...

    Text Solution

    |

  19. Find sin ""(x)/(2), cos "" (x)/(2) and tan "" (x)/(2) in each of the c...

    Text Solution

    |

  20. Find sin ""(x)/(2), cos "" (x)/(2) and tan "" (x)/(2) in each of the c...

    Text Solution

    |

  21. Prove that cos 6x = 32 cos ^(6) x - 48 cos ^(4) x + 18 cos ^(2) x -1.

    Text Solution

    |