Home
Class 11
MATHS
Prove that cos theta + cos (120^(@) + t...

Prove that ` cos theta + cos (120^(@) + theta) + cos ( 120^(@)-theta) =0. `
Hence deduce that `cos ^(3) theta + cos ^(3) ( 120^(@) + theta ) + cos^3( 120^(@)-theta) = 3/4 cos 3 theta.`

Text Solution

AI Generated Solution

The correct Answer is:
To prove the equation \( \cos \theta + \cos(120^\circ + \theta) + \cos(120^\circ - \theta) = 0 \), we can use the cosine addition and subtraction formulas. Let's go through the solution step by step. ### Step 1: Use the Cosine Addition Formula We start with the expression: \[ \cos(120^\circ + \theta) + \cos(120^\circ - \theta) \] Using the cosine addition formula: \[ \cos(a + b) + \cos(a - b) = 2 \cos a \cos b \] Let \( a = 120^\circ \) and \( b = \theta \). Thus, we have: \[ \cos(120^\circ + \theta) + \cos(120^\circ - \theta) = 2 \cos(120^\circ) \cos(\theta) \] ### Step 2: Substitute the Value of \( \cos(120^\circ) \) We know that: \[ \cos(120^\circ) = -\frac{1}{2} \] Substituting this value into our equation gives: \[ \cos(120^\circ + \theta) + \cos(120^\circ - \theta) = 2 \left(-\frac{1}{2}\right) \cos(\theta) = -\cos(\theta) \] ### Step 3: Combine the Terms Now, we can substitute this back into our original equation: \[ \cos \theta + \cos(120^\circ + \theta) + \cos(120^\circ - \theta) = \cos \theta - \cos \theta = 0 \] Thus, we have proven that: \[ \cos \theta + \cos(120^\circ + \theta) + \cos(120^\circ - \theta) = 0 \] ### Step 4: Deduce the Second Equation Now, we will deduce that: \[ \cos^3 \theta + \cos^3(120^\circ + \theta) + \cos^3(120^\circ - \theta) = \frac{3}{4} \cos 3\theta \] Using the identity for the sum of cubes: \[ a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - ac - bc) \] Where \( a = \cos \theta \), \( b = \cos(120^\circ + \theta) \), and \( c = \cos(120^\circ - \theta) \). Since we have already established that \( a + b + c = 0 \), we can simplify: \[ \cos^3 \theta + \cos^3(120^\circ + \theta) + \cos^3(120^\circ - \theta) = 3 \cos \theta \cos(120^\circ + \theta) \cos(120^\circ - \theta) \] ### Step 5: Calculate the Product Using the product of cosines: \[ \cos(120^\circ + \theta) \cos(120^\circ - \theta) = \cos^2(120^\circ) \cos^2(\theta) - \sin^2(120^\circ) \sin^2(\theta) \] Substituting \( \cos(120^\circ) = -\frac{1}{2} \) and \( \sin(120^\circ) = \frac{\sqrt{3}}{2} \): \[ = \left(-\frac{1}{2}\right)^2 \cos^2(\theta) - \left(\frac{\sqrt{3}}{2}\right)^2 \sin^2(\theta) \] \[ = \frac{1}{4} \cos^2(\theta) - \frac{3}{4} \sin^2(\theta) \] \[ = \frac{1}{4} (\cos^2(\theta) - 3\sin^2(\theta)) \] Using \( \sin^2(\theta) = 1 - \cos^2(\theta) \): \[ = \frac{1}{4} (4\cos^2(\theta) - 3) = \frac{1}{4} (4\cos^2(\theta) - 3) \] ### Step 6: Substitute Back Thus, we have: \[ \cos^3 \theta + \cos^3(120^\circ + \theta) + \cos^3(120^\circ - \theta) = 3 \cos \theta \cdot \frac{1}{4} (4 \cos^2 \theta - 3) \] \[ = \frac{3}{4} (4 \cos^3 \theta - 3 \cos \theta) \] This simplifies to: \[ = \frac{3}{4} \cos 3\theta \] Thus, we have proven that: \[ \cos^3 \theta + \cos^3(120^\circ + \theta) + \cos^3(120^\circ - \theta) = \frac{3}{4} \cos 3\theta \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5(A)|49 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5 (B) |35 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Chapter Test|25 Videos
  • CONIC SECTIONS

    ICSE|Exercise Multiple Choice Questions |33 Videos

Similar Questions

Explore conceptually related problems

Prove that 16 cos ^(5) theta - 20 cos ^(3) theta + 5 cos theta = cos 5 theta.

Prove that : cos^2 theta+ cos^2 ((2pi)/3 -theta) + cos^2 ((2pi)/3 +theta) = 3/2

Prove that : sec theta + cos theta != 3/2

Prove that: sin4 theta=4 sin theta cos^(3)theta-4cos theta sin^(3)theta

2(sin^(6) theta + cos^(6)theta) - 3(sin^(4)theta + cos^(4)theta)+ 1 = 0

cos ^(2) 2 theta - sin ^(2) theta = cos theta . cos 3 theta.

Prove that : sin theta cos^3 theta - cos theta sin^3 theta = 1/4 sin4theta .

Solve cos theta+cos 3 theta-2 cos 2 theta=0 .

Solve the general vlaue. cos theta + cos 2 theta + cos 3 theta =0

Prove that : (sin 5theta + sin 3theta)/(cos 5theta + cos 3theta) = tan 4theta

ICSE-COMPOUND AND MULTIPLE ANGLES -CHEPTER TEST
  1. Prove that cos theta + cos (120^(@) + theta) + cos ( 120^(@)-theta) =...

    Text Solution

    |

  2. Show that tan 75^(@) = (sqrt3) +(1 )/( sqrt3 -1) = 2 + sqrt3. Hence de...

    Text Solution

    |

  3. Prove that sin (n+1) x sin (n +2) x + cos (n +1) x cos (n +2) x = cos ...

    Text Solution

    |

  4. if A+ B + C = pi, and cos A = cos B cos C, show that 2 cot B cot C=1.

    Text Solution

    |

  5. Show that (sin (alpha + beta))/( sin (alpha + beta)) = 2, given that ...

    Text Solution

    |

  6. Show that ( cos 10^(@) + sin 10 ^(@))/( cos 10^(@) - sin 10 ^(@)) = ta...

    Text Solution

    |

  7. If sin 2 A = 4/5, find the value of tan A, (0^(@) le A le (pi)/(3))

    Text Solution

    |

  8. Express cot A in terms of cos 2 A

    Text Solution

    |

  9. Write cos 4 theta in terms of cos theta.

    Text Solution

    |

  10. A positive acute angle is divided into two parts whose tangents are 1/...

    Text Solution

    |

  11. Show that cos 10^(@) + cos 110^(@) + cos 130^(@) = 0

    Text Solution

    |

  12. Show that (sin 5 A + 2 sin 8A + sin 11 A)/( sin 8A + 2 sin 11 A + sin ...

    Text Solution

    |

  13. Show that (1)/(2 sin 10^(@)) - 2 sin 70^(@) =1.

    Text Solution

    |

  14. Show that sin 19^(@) + sin 41^(@) + sin 83^(@) = sin 23 ^(@) + sin 37^...

    Text Solution

    |

  15. If sin A = (1)/(sqrt3) and sin B = (1)/(sqrt5) find the value of tan...

    Text Solution

    |

  16. If sin theta = n sin ( theta + 2 alpha ) , show that ( n -1) tan (the...

    Text Solution

    |

  17. If tan "" (alpha )/(2) and tan "" (beta)/( 2) are the roots of the eq...

    Text Solution

    |

  18. Prove that ((cos A + cos B)/( sin A - sin B )) ^(n) + ((sin A + sin B ...

    Text Solution

    |

  19. Find sin ""(x)/(2), cos "" (x)/(2) and tan "" (x)/(2) in each of the c...

    Text Solution

    |

  20. Find sin ""(x)/(2), cos "" (x)/(2) and tan "" (x)/(2) in each of the c...

    Text Solution

    |

  21. Prove that cos 6x = 32 cos ^(6) x - 48 cos ^(4) x + 18 cos ^(2) x -1.

    Text Solution

    |