Home
Class 11
MATHS
Using the value of cos 315 ^(@) , find t...

Using the value of `cos 315 ^(@) ,` find the value of `sin 157 ""(1)/(2) ^(@and cos 157 (1)/(2) ""^(@).`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the values of \( \sin 157.5^\circ \) and \( \cos 157.5^\circ \) using the value of \( \cos 315^\circ \), we can follow these steps: ### Step 1: Identify the Quadrant Since \( 157.5^\circ \) is between \( 90^\circ \) and \( 180^\circ \), it lies in the second quadrant where sine is positive and cosine is negative. **Hint:** Remember the signs of trigonometric functions in different quadrants. ### Step 2: Use the Half-Angle Formulas We can express \( \sin 157.5^\circ \) and \( \cos 157.5^\circ \) using the half-angle formulas: - \( \sin \theta = \sqrt{\frac{1 - \cos 2\theta}{2}} \) - \( \cos \theta = \sqrt{\frac{1 + \cos 2\theta}{2}} \) Here, \( \theta = 157.5^\circ \) corresponds to \( 2\theta = 315^\circ \). **Hint:** Recall the half-angle identities for sine and cosine. ### Step 3: Find \( \cos 315^\circ \) To find \( \cos 315^\circ \), we can use the cosine of a related angle: \[ \cos 315^\circ = \cos(360^\circ - 45^\circ) = \cos 45^\circ = \frac{1}{\sqrt{2}} \] **Hint:** Use the property \( \cos(360^\circ - \theta) = \cos \theta \). ### Step 4: Calculate \( \sin 157.5^\circ \) Using the half-angle formula for sine: \[ \sin 157.5^\circ = \sqrt{\frac{1 - \cos 315^\circ}{2}} = \sqrt{\frac{1 - \frac{1}{\sqrt{2}}}{2}} \] Now simplify: \[ = \sqrt{\frac{1 - \frac{1}{\sqrt{2}}}{2}} = \sqrt{\frac{\frac{\sqrt{2} - 1}{\sqrt{2}}}{2}} = \sqrt{\frac{\sqrt{2} - 1}{2\sqrt{2}}} \] This can be simplified further: \[ = \frac{1}{\sqrt{2}} \sqrt{\sqrt{2} - 1} \] **Hint:** Simplifying square roots often involves rationalizing the denominator. ### Step 5: Calculate \( \cos 157.5^\circ \) Using the half-angle formula for cosine: \[ \cos 157.5^\circ = -\sqrt{\frac{1 + \cos 315^\circ}{2}} = -\sqrt{\frac{1 + \frac{1}{\sqrt{2}}}{2}} \] Now simplify: \[ = -\sqrt{\frac{\frac{\sqrt{2} + 1}{\sqrt{2}}}{2}} = -\sqrt{\frac{\sqrt{2} + 1}{2\sqrt{2}}} \] This can be simplified further: \[ = -\frac{1}{\sqrt{2}} \sqrt{\sqrt{2} + 1} \] **Hint:** Remember that cosine is negative in the second quadrant. ### Final Results Thus, we have: \[ \sin 157.5^\circ = \frac{1}{\sqrt{2}} \sqrt{\sqrt{2} - 1} \] \[ \cos 157.5^\circ = -\frac{1}{\sqrt{2}} \sqrt{\sqrt{2} + 1} \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5(A)|49 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5 (B) |35 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Chapter Test|25 Videos
  • CONIC SECTIONS

    ICSE|Exercise Multiple Choice Questions |33 Videos

Similar Questions

Explore conceptually related problems

Find the values of sin (cos−1 3/5)

Find the value of cos^-1(-1//2) .

Find the value of : arc sin (1/2) + arc cos (1/2)

Find the value of sin [ arc cos (- 1/2)]

If cos 120^(@)=(-1)/(2) find the values of sin 120^(@) and tan 120^(@) .

Find the value of sin(1/4)cos^(-1)((-1)/9)

Find the value of sin(1/4cos^(-1)((-1)/9))

Find the value of : sin (sin^(-1) x + cos^(-1) x)

If cos A =(1)/(3) ,then find the values of sin A and tan A.

If cos A = (9)/(41) , find the value of (1)/(sin ^(2)A ) - cot ^(2) A

ICSE-COMPOUND AND MULTIPLE ANGLES -CHEPTER TEST
  1. Using the value of cos 315 ^(@) , find the value of sin 157 ""(1)/(2) ...

    Text Solution

    |

  2. Show that tan 75^(@) = (sqrt3) +(1 )/( sqrt3 -1) = 2 + sqrt3. Hence de...

    Text Solution

    |

  3. Prove that sin (n+1) x sin (n +2) x + cos (n +1) x cos (n +2) x = cos ...

    Text Solution

    |

  4. if A+ B + C = pi, and cos A = cos B cos C, show that 2 cot B cot C=1.

    Text Solution

    |

  5. Show that (sin (alpha + beta))/( sin (alpha + beta)) = 2, given that ...

    Text Solution

    |

  6. Show that ( cos 10^(@) + sin 10 ^(@))/( cos 10^(@) - sin 10 ^(@)) = ta...

    Text Solution

    |

  7. If sin 2 A = 4/5, find the value of tan A, (0^(@) le A le (pi)/(3))

    Text Solution

    |

  8. Express cot A in terms of cos 2 A

    Text Solution

    |

  9. Write cos 4 theta in terms of cos theta.

    Text Solution

    |

  10. A positive acute angle is divided into two parts whose tangents are 1/...

    Text Solution

    |

  11. Show that cos 10^(@) + cos 110^(@) + cos 130^(@) = 0

    Text Solution

    |

  12. Show that (sin 5 A + 2 sin 8A + sin 11 A)/( sin 8A + 2 sin 11 A + sin ...

    Text Solution

    |

  13. Show that (1)/(2 sin 10^(@)) - 2 sin 70^(@) =1.

    Text Solution

    |

  14. Show that sin 19^(@) + sin 41^(@) + sin 83^(@) = sin 23 ^(@) + sin 37^...

    Text Solution

    |

  15. If sin A = (1)/(sqrt3) and sin B = (1)/(sqrt5) find the value of tan...

    Text Solution

    |

  16. If sin theta = n sin ( theta + 2 alpha ) , show that ( n -1) tan (the...

    Text Solution

    |

  17. If tan "" (alpha )/(2) and tan "" (beta)/( 2) are the roots of the eq...

    Text Solution

    |

  18. Prove that ((cos A + cos B)/( sin A - sin B )) ^(n) + ((sin A + sin B ...

    Text Solution

    |

  19. Find sin ""(x)/(2), cos "" (x)/(2) and tan "" (x)/(2) in each of the c...

    Text Solution

    |

  20. Find sin ""(x)/(2), cos "" (x)/(2) and tan "" (x)/(2) in each of the c...

    Text Solution

    |

  21. Prove that cos 6x = 32 cos ^(6) x - 48 cos ^(4) x + 18 cos ^(2) x -1.

    Text Solution

    |