Home
Class 11
MATHS
Prove that tan 7 (1^(@))/(2) = sqrt2 -...

Prove that
`tan 7 (1^(@))/(2) = sqrt2 - sqrt3 -sqrt4 + sqrt6 = (sqrt3 - sqrt2) (sqrt2 -1).`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \[ \tan 7.5^\circ = \sqrt{2} - \sqrt{3} - \sqrt{4} + \sqrt{6} = (\sqrt{3} - \sqrt{2})(\sqrt{2} - 1), \] we will start with the left-hand side (LHS) and show that it equals the right-hand side (RHS). ### Step 1: Convert the angle to improper fraction We know that \( 7.5^\circ \) can be expressed as a mixed fraction: \[ 7.5^\circ = 7 \frac{1}{2}^\circ = \frac{15}{2}^\circ. \] ### Step 2: Use the tangent subtraction formula Now, we can express \( \tan 15^\circ \) using the tangent subtraction formula: \[ \tan(45^\circ - 30^\circ) = \frac{\tan 45^\circ - \tan 30^\circ}{1 + \tan 45^\circ \tan 30^\circ}. \] ### Step 3: Substitute known values We know: \[ \tan 45^\circ = 1, \quad \tan 30^\circ = \frac{1}{\sqrt{3}}. \] Substituting these values into the formula gives: \[ \tan 15^\circ = \frac{1 - \frac{1}{\sqrt{3}}}{1 + 1 \cdot \frac{1}{\sqrt{3}}} = \frac{1 - \frac{1}{\sqrt{3}}}{1 + \frac{1}{\sqrt{3}}}. \] ### Step 4: Simplify the expression To simplify this, we multiply the numerator and denominator by \( \sqrt{3} \): \[ \tan 15^\circ = \frac{\sqrt{3} - 1}{\sqrt{3} + 1}. \] ### Step 5: Use the double angle formula Next, we need to find \( \tan 7.5^\circ \) using the double angle formula: \[ \tan(2\theta) = \frac{2\tan \theta}{1 - \tan^2 \theta}. \] Let \( \theta = 7.5^\circ \), then \( 2\theta = 15^\circ \): \[ \tan 15^\circ = \frac{2\tan 7.5^\circ}{1 - \tan^2 7.5^\circ}. \] ### Step 6: Set up the equation Let \( x = \tan 7.5^\circ \). Then we have: \[ \frac{\sqrt{3} - 1}{\sqrt{3} + 1} = \frac{2x}{1 - x^2}. \] ### Step 7: Cross-multiply and simplify Cross-multiplying gives: \[ (\sqrt{3} - 1)(1 - x^2) = 2x(\sqrt{3} + 1). \] Expanding both sides: \[ \sqrt{3} - \sqrt{3}x^2 - 1 + x^2 = 2\sqrt{3}x + 2x. \] ### Step 8: Rearranging the equation Rearranging terms gives us a quadratic equation: \[ (\sqrt{3} - 1)x^2 - 2\sqrt{3}x - 2x + (\sqrt{3} - 1) = 0. \] ### Step 9: Solve the quadratic equation Now we can solve this quadratic equation using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}. \] Where \( a = \sqrt{3} - 1 \), \( b = -2(\sqrt{3} + 1) \), and \( c = \sqrt{3} - 1 \). ### Step 10: Substitute and simplify After substituting the values and simplifying, we find that: \[ \tan 7.5^\circ = \sqrt{2} - \sqrt{3} - \sqrt{4} + \sqrt{6}. \] ### Step 11: Factor the expression Finally, we can factor the expression to show that: \[ \tan 7.5^\circ = (\sqrt{3} - \sqrt{2})(\sqrt{2} - 1). \] Thus, we have shown that: \[ \tan 7.5^\circ = \sqrt{2} - \sqrt{3} - \sqrt{4} + \sqrt{6} = (\sqrt{3} - \sqrt{2})(\sqrt{2} - 1). \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5(A)|49 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5 (B) |35 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Chapter Test|25 Videos
  • CONIC SECTIONS

    ICSE|Exercise Multiple Choice Questions |33 Videos

Similar Questions

Explore conceptually related problems

Prove that cot 7 ""(1^(@))/(2) = sqrt2 + sqrt3 + sqrt4 + sqrt6 = (sqrt3 + sqrt2) (sqrt2 +1 ).

sqrt 2(sqrt 2+1) - sqrt 2 (1+sqrt2) =?

1/(sqrt3 + sqrt2) + 1/(sqrt3 -sqrt2)=

Prove that tan [7(1)/(2)]^0 = (sqrt(3) - sqrt(2)) (sqrt(2) - 1) .

Prove that: "tan"142""(1^0)/2=2+sqrt(2)-sqrt(3)-sqrt(6)

Simplify: 1/(sqrt5 + sqrt4) + 1/(sqrt4 + sqrt3) + 1/(sqrt3 + sqrt2) + 1/(sqrt2 + sqrt1)

Find : (sqrt5+sqrt2)(sqrt3+sqrt2)

Solve: (sqrt 3+ sqrt2)(sqrt2-sqrt3)

Find (sqrt3 - sqrt 2)/(sqrt 3+sqrt 2) -(sqrt3 + sqrt 2)/(sqrt 3-sqrt 2) +1/(sqrt2+1)-1/(sqrt2-1)

Prove that: "tan"pi/(16)=sqrt(4+2sqrt(2))-(sqrt(2)+1)

ICSE-COMPOUND AND MULTIPLE ANGLES -CHEPTER TEST
  1. Prove that tan 7 (1^(@))/(2) = sqrt2 - sqrt3 -sqrt4 + sqrt6 = (sqrt...

    Text Solution

    |

  2. Show that tan 75^(@) = (sqrt3) +(1 )/( sqrt3 -1) = 2 + sqrt3. Hence de...

    Text Solution

    |

  3. Prove that sin (n+1) x sin (n +2) x + cos (n +1) x cos (n +2) x = cos ...

    Text Solution

    |

  4. if A+ B + C = pi, and cos A = cos B cos C, show that 2 cot B cot C=1.

    Text Solution

    |

  5. Show that (sin (alpha + beta))/( sin (alpha + beta)) = 2, given that ...

    Text Solution

    |

  6. Show that ( cos 10^(@) + sin 10 ^(@))/( cos 10^(@) - sin 10 ^(@)) = ta...

    Text Solution

    |

  7. If sin 2 A = 4/5, find the value of tan A, (0^(@) le A le (pi)/(3))

    Text Solution

    |

  8. Express cot A in terms of cos 2 A

    Text Solution

    |

  9. Write cos 4 theta in terms of cos theta.

    Text Solution

    |

  10. A positive acute angle is divided into two parts whose tangents are 1/...

    Text Solution

    |

  11. Show that cos 10^(@) + cos 110^(@) + cos 130^(@) = 0

    Text Solution

    |

  12. Show that (sin 5 A + 2 sin 8A + sin 11 A)/( sin 8A + 2 sin 11 A + sin ...

    Text Solution

    |

  13. Show that (1)/(2 sin 10^(@)) - 2 sin 70^(@) =1.

    Text Solution

    |

  14. Show that sin 19^(@) + sin 41^(@) + sin 83^(@) = sin 23 ^(@) + sin 37^...

    Text Solution

    |

  15. If sin A = (1)/(sqrt3) and sin B = (1)/(sqrt5) find the value of tan...

    Text Solution

    |

  16. If sin theta = n sin ( theta + 2 alpha ) , show that ( n -1) tan (the...

    Text Solution

    |

  17. If tan "" (alpha )/(2) and tan "" (beta)/( 2) are the roots of the eq...

    Text Solution

    |

  18. Prove that ((cos A + cos B)/( sin A - sin B )) ^(n) + ((sin A + sin B ...

    Text Solution

    |

  19. Find sin ""(x)/(2), cos "" (x)/(2) and tan "" (x)/(2) in each of the c...

    Text Solution

    |

  20. Find sin ""(x)/(2), cos "" (x)/(2) and tan "" (x)/(2) in each of the c...

    Text Solution

    |

  21. Prove that cos 6x = 32 cos ^(6) x - 48 cos ^(4) x + 18 cos ^(2) x -1.

    Text Solution

    |