Home
Class 11
MATHS
Compute cosec (13pi//12)...

Compute
`cosec (13pi//12)`

Text Solution

AI Generated Solution

The correct Answer is:
To compute \( \csc\left(\frac{13\pi}{12}\right) \), we will follow these steps: ### Step 1: Simplify the angle We can express \( \frac{13\pi}{12} \) in a more manageable form: \[ \frac{13\pi}{12} = \pi + \frac{\pi}{12} \] This means we can rewrite \( \csc\left(\frac{13\pi}{12}\right) \) as: \[ \csc\left(\frac{13\pi}{12}\right) = \csc\left(\pi + \frac{\pi}{12}\right) \] ### Step 2: Use the cosecant identity Using the identity for cosecant, we know: \[ \csc(\pi + \theta) = -\csc(\theta) \] Thus, we have: \[ \csc\left(\frac{13\pi}{12}\right) = -\csc\left(\frac{\pi}{12}\right) \] ### Step 3: Find \( \csc\left(\frac{\pi}{12}\right) \) Now we need to find \( \csc\left(\frac{\pi}{12}\right) \), which is the reciprocal of \( \sin\left(\frac{\pi}{12}\right) \): \[ \csc\left(\frac{\pi}{12}\right) = \frac{1}{\sin\left(\frac{\pi}{12}\right)} \] ### Step 4: Calculate \( \sin\left(\frac{\pi}{12}\right) \) We can find \( \sin\left(\frac{\pi}{12}\right) \) using the sine subtraction formula: \[ \sin\left(\frac{\pi}{12}\right) = \sin\left(15^\circ\right) = \sin(45^\circ - 30^\circ) \] Using the sine subtraction formula: \[ \sin(a - b) = \sin a \cos b - \cos a \sin b \] Let \( a = 45^\circ \) and \( b = 30^\circ \): \[ \sin(45^\circ) = \frac{1}{\sqrt{2}}, \quad \cos(30^\circ) = \frac{\sqrt{3}}{2}, \quad \cos(45^\circ) = \frac{1}{\sqrt{2}}, \quad \sin(30^\circ) = \frac{1}{2} \] Substituting these values: \[ \sin\left(15^\circ\right) = \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2} - \frac{1}{\sqrt{2}} \cdot \frac{1}{2} \] \[ = \frac{\sqrt{3}}{2\sqrt{2}} - \frac{1}{2\sqrt{2}} = \frac{\sqrt{3} - 1}{2\sqrt{2}} \] ### Step 5: Substitute back to find \( \csc\left(\frac{\pi}{12}\right) \) Now substituting back: \[ \csc\left(\frac{\pi}{12}\right) = \frac{1}{\sin\left(\frac{\pi}{12}\right)} = \frac{2\sqrt{2}}{\sqrt{3} - 1} \] ### Step 6: Rationalize the denominator To rationalize the denominator: \[ \csc\left(\frac{\pi}{12}\right) = \frac{2\sqrt{2}(\sqrt{3} + 1)}{(\sqrt{3} - 1)(\sqrt{3} + 1)} = \frac{2\sqrt{2}(\sqrt{3} + 1)}{3 - 1} = \frac{2\sqrt{2}(\sqrt{3} + 1)}{2} = \sqrt{2}(\sqrt{3} + 1) \] ### Step 7: Final substitution Now substituting back to find \( \csc\left(\frac{13\pi}{12}\right) \): \[ \csc\left(\frac{13\pi}{12}\right) = -\csc\left(\frac{\pi}{12}\right) = -\sqrt{2}(\sqrt{3} + 1) \] ### Final Answer Thus, the final answer is: \[ \csc\left(\frac{13\pi}{12}\right) = -\sqrt{2}(\sqrt{3} + 1) \] ---
Promotional Banner

Topper's Solved these Questions

  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5 (B) |35 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5 (C ) |30 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise CHEPTER TEST |23 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Chapter Test|25 Videos
  • CONIC SECTIONS

    ICSE|Exercise Multiple Choice Questions |33 Videos

Similar Questions

Explore conceptually related problems

If sin ^(-1)""(x)/(3) +cosec ^(-1) ""(13)/(12) = (pi)/(2) , then x is

Find the value of tan (13pi)/(12) .

If cosec . (pi)/(32)+ cosec. (pi)/(16)+ cosec. (pi)/(8)+ cosec. (pi)/(4)+ cosec. (pi)/(2)= cot. (pi)/(k) , then the value of k is

Prove that cosec(pi/4+theta/2)cosec(pi/4-theta/2)=2sec theta

The value of cosec(pi/18)-sqrt3sec(pi/18) is a

The value of "cosec".(pi)/(18)-4 sin""(7pi)/(18) is ____________

Value of cos^(-1) cos(13pi)/(6) is

Evaluate : cos^(-1)(cos""(13pi)/6)+tan^(-1)(tan""(7pi)/6) .

The vlaue of cosec^(2)""(pi)/(7)+cosec^(2)""(2pi)/(7)+cosec^(2)""(3pi)/(7), is

int_(pi//6)^(pi//2) (" cosec x cot x")/(1+" cosec "^(2) x)dx

ICSE-COMPOUND AND MULTIPLE ANGLES -EXERCISE 5(A)
  1. Compute sin 13 5 ^(@) from the functions of 180^(@) and 45 ^(@)

    Text Solution

    |

  2. Compute cos 195^(@) from the functions of 15 0^(@) and 45 ^(@),

    Text Solution

    |

  3. Compute cosec (13pi//12)

    Text Solution

    |

  4. Simplify be reducing to a single term : sin 3 alpha cos 2 alpha + co...

    Text Solution

    |

  5. Simplify be reducing to a single term : cos 5 theta cos 2 theta - si...

    Text Solution

    |

  6. Simplify by reducing to a single term : sin 22 ^(@) cos 38^(@) + cos...

    Text Solution

    |

  7. Simplify be reducing to a single term : sin 80^(@) cos 20^(@) - cos ...

    Text Solution

    |

  8. Simplify by reducing to a single term : sin (x -y) cos x - cos (x-y)...

    Text Solution

    |

  9. Simplify be reducing to a single term : cos (theta + alpha ) cos ( t...

    Text Solution

    |

  10. Simplify be reducing to a single term : (tan 69^(@) + tan 66^(@))/(1...

    Text Solution

    |

  11. Simplify be reducing to a single term : (tan alpha - tan ( alpha - b...

    Text Solution

    |

  12. Prove that (sin alpha cos beta + cos alpha sin beta) ^(2) + (cos alpha...

    Text Solution

    |

  13. sin (60^(@) + theta) - sin ( 60^(@) - theta ) = sin theta.

    Text Solution

    |

  14. Prove that sin(θ+30°)+cos(θ+60°)= cos θ.

    Text Solution

    |

  15. sin ( 240^(@) + theta) + cos (330^(@) + theta ) = 0

    Text Solution

    |

  16. sin (A - 45 ^(@) ) = (1)/( sqrt2) (sin A - cos A)

    Text Solution

    |

  17. Prove that :cos ((pi)/(3) + x) = ( cos x - sqrt3 sin x )/(2)

    Text Solution

    |

  18. Prove: tan (45^(@)+ theta ) = (1 + tan theta)/( 1- tan theta )

    Text Solution

    |

  19. Prove: tan (45 ^(@) - theta ) =(1 - tan theta)/( 1 + tan theta)

    Text Solution

    |

  20. (sin (theta + phi))/( sin theta cos phi) = cot theta tan phi +1.

    Text Solution

    |